1. 海洋检测公司多不多
海洋检测公司比较少,如果不需要出海,只是检测标本,倒是有一些公司,比如飞秒检测等
2. 什么是海浪方向谱
方向谱的研究,除理论上的意义外,还可用于大面积海浪的预报,波浪的绕射和折射,水工建筑物的作用力和振动,船体、浮标和其他浮体对海浪的反应,以及泥沙运动等问题的研究。但由于观测上和资料处理上的困难,海浪方向谱的研究远少于频谱。
通常将方向谱取为S(ω,θ)=S(ω)·G(ω,θ),其中S(ω)为频谱,G(ω,θ)为体现能量相对于方向分布的一个函数,θ为海浪主方向(一般取为平均风向)和组成波的波向之间的夹角。G(ω,θ)必须通过观测得到,其中最简单的形式为cos。通常取2~4,愈大,能量愈集中于主波向附近。对于浅水波来说,比较大。
为了测量方向谱,可用几个与海水接触的测头组成仪器阵列,记录的项目可以是波面高度,也可以是水质点的速度、加速度、压力或作用力。为经济起见,通常将尽可能少的测头摆成合理的几何图形,以得到最大的分辨率。还可用尺寸远小于海浪波长并跟随波面运动的自由浮标,记录波面的高度和两个方向的波面斜率和曲率,也可以利用压力、水质点速度或波浪作用力的记录。此外,航空遥感和卫星遥感也可以确定方向谱。
如何求得海浪谱,主要方法有二:一是利用观测得到的波高、周期的推导,得出半理论、半经验形式的海浪谱;二是利用某一固定点测得的波面随时间变化的这段记录,来推算相关函数,然后求谱。也有通过建立能量平衡方程式来求谱。目前得到的谱,主要是建立在观测数据的基础上求出的。但由于目前尚缺乏精确的风和海浪的观测资料,故已提出的一些谱,彼此相差较大。海浪谱的分析研究是很重要的,根据海浪谱,可以较合理地设计防坡堤及海面对雷达的反射部分,利用海浪谱,可以算出波高、周期等海浪要素。目前,有的国家根据海浪谱设计出自动控制系统,来校正军舰上武器发射偏差。
3. 海洋石油环境条件观测技术
海洋石油环境条件就是海洋石油生存发展的自然环境条件,按需要可分为工作环境条件、工程设计环境条件及灾害环境条件。工作环境条件,指海洋石油勘探开发生产作业所需要的环境条件。工程设计环境条件,是海上平台、钻井船、输油管道、系泊装置及油气处理终端等各项工程设计环境参数(包括极端环境条件和作业环境条件);灾害环境条件,是海洋石油生产作业区所能遭遇的严重海冰、热带气旋(台风)、风暴潮、灾害地质、地震海啸等自然灾害。这些环境条件,是一项扎实的基础工作,是工程设计的科学依据和海上安全生产的重要保障,更与海洋石油的生存、发展紧密相关。海洋石油环境条件,是应运而生的一门新的学科,随着海洋石油生产的发展,科学技术的不断进步,其实用性和社会效益尤为显著。
一、海上固定平台水文气象自动调查系统
在我国南海西部海域,由于特殊的地理条件,强热带风暴、强冷空气大风、强对流灾害性天气和土台风(即“三强一土”)一直影响着海上油气田的勘探开发正常运行。近年统计,受其影响涠洲油田每年要停产25天左右,钻井作业要停止约550h。为了保证海上油气田建筑设施和工作人员安全,保证在恶劣天气下油气田正常生产,以及检验、修订外载荷的计算公式,提高结构物设计水平,必须掌握海上气象水文要素的时空变化规律,这就需要进行长期、连续的气象水文观测。
要获得海上恶劣天气下的气象水文实测资料,是一项艰巨的任务。过去曾以投放浮标的手段获取气象水文观测;而在平台进行人工操作的观测方法,一但碰到恶劣天气(台风等),操作人员必须撤离平台,难以捕捉到台风完整资料。为了解决以上问题,从20世纪90年代中期开始,中国海油在具有代表性的海区平台上,研究建立了一套自动化程度高的气象水文综合观测系统,使用国外先进的气象水文传感器,研制数据自动采集及通过卫星进行发射、接受系统,配备应急电源设备,使之在恶劣天气下观测到的气象水文资料,能通过卫星及时传递到岸站。岸站具有自动化程度较高的接收功能,经计算机处理,随时能提供给工程设计和生产作业部门。
(一)测量项目与技术指标
主要测量项目有13项,其中气象有风速、风向、气压、气温、湿度;水文测量项目有波高、波周期、波向、(多层)流速、(多层)流向、水位、水温、盐度。另外还设有非工程所需的辅助测量项目,如平台经纬度、系统工作电压、故障报警等,待增测量项目有多层风、腐蚀、环保、浊度等。
1.传感器选择
根据需要确定各种传感器的测量范围及测量精度:①气象传感器引进自动气象站,包括风速、风向、气压、气温、湿度等传感器;②水文传感器引进浪流潮温盐测量仪,包括波高、波周期、波向、流速、流向、水位、水温、盐度等传感器;③多层海浪流测量仪引进可测量流速剖面的声学多普勒剖面海流仪。
2、传感器在生产平台上的安装
传感器在生产平台上的安装方案,是为了保证系统在无人值守情况下长期安全地工作,因此应遵守以下原则:①不影响生产平台作业;②所测到资料的质量能得到保障;③在气象水温要素达到极限时能得到完整资料;④保证仪器不丢失等。
(二)资料采集与设定
1.气象资料
气象资料每整点观测一次,每1´记录一组数据,如风速等,同时记录年、月、日、时、分、1"最大风速、3"最大风速、1´最大风速、2´最大风速、10´最大风速、30´最大风速和60´平均风速、整点前2´最大风速、整点前2´平均风速、整点前2´最大风向、整点前2´内3´最大风速、整点前2´内1´最大风速、整点前10´最大风速、整点前10´平均风速、整点前10´内3´最大风速、整点前10´内1´最大风速、整点前10´内2´最大风速、整点前10´平均风向、整点前10´平均气温、整点前10´平均相对湿度、整点前10´平均气压。以上共16项,利用风速记录的多余通道比原定方案增加u项,更便于计算阵风因子。所谓3"最大风速是指1小时内每3秒取为一组数,求其平均值,共1200个,取其最大者;所谓整点前2´内3´最大风速是指整点前2´内共120个数,每三个一组,取平均值,共40个,挑其最大者,其余类推。
2.浪流潮温盐资料
浪流潮温盐资料一般在平均海平面下8m处左右观测,实际深度需在有观测资料后依资料计算而得,海浪资料为每3h观测一次,每0.2s取一个离散值,每次记录2048个波浪离散值。当2´最大风速大于10.8m/s或有效波高Hs≥4.0m时,改为每小时观测一次;每10min记录一次表层流速、流向、水位、水温和盐度值。
3.多层流观测
多层流观测时仪器探头置于平均海平面下10m左右直到海底,每隔2m观测一层流速、流向。整点后每隔10min记录一次。
(三)微机数据采集与控制
采集好的数据处理后,每天02、05、08、11、14、17、20、23时共8次通过卫星通信发送到岸站。同时,采集原始数据存入固态存储器,容量为存储半年以上的数据。
当2´最大风速大于10.8m/s或有效波高Hs>4.0m时,系统超限自动加密,将数据卫星传输改为每小时一次,超限值也可自动或人工设置。
1.卫星数据传输
海上石油平台与岸站之间采用INMARSAT-C卫星通信,传输平台测量到的各种要素,通信距离可以满足我国任意海域的海洋石油平台与我国任意地点岸站间的数据传输。平台测量数据平均有效接收率不小于90%。INMARSAT-C卫星收发信系统选用美国进口设备。
2.数据接收岸站
①石油平台数据卫星接收岸站设在南海西部石油公司总部;②岸站具有自动接收海上平台发射来的信号并处理打印各种数据的功能;③岸站接收到的数据除打印外还存入硬盘中,以利定期拷贝、存档;④一套岸站设施能够完成多个石油平台发送来的数据接收处理。
3.交直流电源及应急供电系统
配备一套由交流转换成直流供电系统工作的电源以及在台风时平台无人值守情况下,也能使系统正常工作的自动切换控制系统。
4.岸站资料处理软件系统
岸站资料处理软件系统可将岸站接收到的信息打印成报表并绘成时间过程线。
现场试验表明:
a.气象资料由于传感器安装较高,很安全,极少外界干扰,只发生一次受渔网缠断S4电缆影响造成串口被烧,使气象资料记录中断的事故。但这不是气象传感器本身原因所致。
b.S4资料的中断,两次受鱼钩影响,一次受渔网影响,也不是S4仪器本身问题所致。但资料中盐度数据不稳定,资料不好,可能是传感器有故障,已整机送回厂家检修,后重上平台安装使用。
c.ADCP资料,开始受安装条件限制,有资料,但有5层左右受桩腿影响,流的资料不好。后将ADCP外移解决了上述问题,但发生丢失事故。后经改装仪器支架,使仪器外伸约70cm,资料大为好转,现基本不受桩腿影响。
d.岸站工作比较正常,只有受太阳活动等因素影响,气象资料误码2次,共7.9天,误码率为2%~3%,完好率为97.7%,远远超过合同书90%以上的要求。
(四)仪器
主要有:①YOUNG-4X自动气象站一套(包括主机及显示器1件,风速、风向传感器1件,气温、湿度传感器1件,百叶箱1件);②S4ADW浪潮仪1件;③300kHz多普勒剖面海流仪1件;④数据采集仪1件;⑤应急电源1件;⑥卫星发射天线1件;⑦锚碇系统1套;⑧电缆及附件1套。
本项目经3年半的调研、选择传感器、研制数据采集处理系统、研究安装、锚碇方案以及室内试验、近岸试验等各种科研工作,自1999年3月将全套仪器安装到W11-4采油平台上进行现场试验,至2000年11月7日止,共测气象资料18个月;S4资料9.2个月;ADCP资料6.7个月,岸站接收气象资料11.3个月。
二、海底泥温调查
海底泥温调查是一项开创性的工作。穿过几十米乃至几百米的海水探测海床的温度,这在中国海洋调查史上从来没有先例,渤海“JZ20-2海底管线和SZ36-1油田的海底泥温、水温、气温的调查”是第一次尝试。它是为了提供真实的海底泥温设计参数(以往工程设计都将冰底水温假定为海底泥温)。调查结果发现真实的最低海底泥温比冰底水温要低4~6℃,大大地降低工程成本,其经济效益和社会效益十分显著。
(一)秦皇岛(QHD)32-6油田平台场址和海底管道路由海域海底泥温、水温观测
1.调查概况
观测时间为1998年11月10~22日,在QHD32-6油田平台场址和海底管道路由海域共设置海底泥温水温观测点17个。
水温设表、中、底三层观测(表层:0~1m;中层:0.6H;底层:距海底0~1m),泥温观测分为表层0.5、1.O、2.O、3.Om共五层。
2.结果分析
通过对现场实测资料及历史资料进行统计、计算,报告中给出了泥温、水温的统计参数,同时还推算出多年一遇的泥温极值(表17-1)。
表17-1多年一遇的泥温极值(℃)
表17-4不同重现期的最低泥温(℃)
4. 什么是海浪频谱
在海浪谱中,风浪频谱得到最广泛的研究,因为它的应用最广,也最易于得到,但尚无基于严格理论的风浪频谱。通常p为5~7,q为2~4,在正量A和B之内。除了数值常数外,还包含风要素(如风速、风时和风区)或浪要素(如特征波高和周期)作为参量,故谱的形状随风的状态或对应的浪的状态而变化。上述两项的乘积代表的谱,在ω=0处为0,在0附近的值很小,ω增加时,它骤然增大至一个峰值,然后随频率的增大而迅速减小,在ω→∞时趋于0。这表明谱的频率范围在理论上虽为0~∞,但其显著部分却集中在谱峰附近。海面上存在的许多波,其显著部分的周期范围很小,恰和理论结果相对应。随着风速的增大,谱曲线下面的面积(从而风浪的总能量或波高)增大,峰沿低频率方向推移,表明风浪显著部分的周期增大。
从波面的记录估计谱,是获得海浪频谱的主要途径。习惯上将谱的估计方法分为相关函数法和快速傅氏变换算法两种。在电子计算机上计算时,后者比前者更节约时间。20世纪70年代,开始引用最大熵等方法。依此可自不多的资料估计出分辨率较高的谱,它适用于非平稳的海浪状态。
在海浪研究中已提出的频谱很多常采用的皮尔孙—莫斯科维奇谱,是60年代中期提出的,是在对充分成长的风浪记录进行谱估计和曲线的拟合时得到的,已为多数观测所证实。
60年代末,按照“北海联合海浪计划”(Jonswap),对海浪进行了系统的观测,提出了一种频谱,其中包括分别反映能量水平、峰的频率尺度和谱形在内的5个参量。这种谱表示风浪处于成长的状态,它具有非常尖而高的峰。对Jonswap谱分析的结果表明,风浪的能量主要通过谱的中间频率部分传递,然后借波与波之间的非线性相互作用,再分别向谱的高频和低频部分传递。反映这种能量交换的谱,具有稳定的形式。利用此特性,可将谱随风的变化转换为其中的参量随风的变化,从而提供另一种海浪计算或预报的方法。
有一种半经验的方法,它假定海浪的某些外观特征反映其内部结构,由观测到的波高和周期间的关系,可导出海浪谱。早在50年代初提出的纽曼谱和工程中常使用的布雷奇奈德尔谱,都属此类,前者p=6,q=2;后者p=5,q=4。有些苏联作者采用具有前述形式的频谱,然后由观测资料确定其中的常数和参量。
中国学者于50年代末至60年代中期,尝试自风浪能量的摄取和消耗出发推导出谱,其中包括用风要素作为参量,从而描述谱相对于风时和风区的成长。由这些谱计算波高和周期等要素比较方便,但推导中涉及的能量计算,仍是半经验性的。
5. 全球海洋观测系统是什么样的系统
各国的决策人和科学家逐渐认识到海洋是一个整体,而且是经常不断地变化的,观测海洋不能一劳永逸,必须全球一致建立制度共同观测海洋。
全球海洋观测系统是一个立体观测系统,只靠海上实验室——调查船进行海洋观测是远远不够的,还要利用海洋油气开发平台、浮标、潜在海水里的浮标——潜标、放置在海底的仪器舱、潜水器、岸边海洋观测站和岛屿海洋观测站、飞行器以及卫星等进行观测。立体海洋观测系统就是由装在这些仪器平台上的仪器组成的。
中国海洋观测站
利用浮标观测是立体海洋观测系统的重要一环。浮标是空心的薄壁金属壳体,做成球形、圆柱形或船形,有浮力,能浮在海面,或潜在海中某一深度,壳体上和壳体里面都可以装仪器,电池和运算用的计算机放在壳体里面,壳体的上部装有天线。有的浮标是锚系在固定站位的,可长期、经常地观测海洋要素,通过卫星与基地联系。有的浮标随着海流漂浮。有的浮标是测专项要素的,例如波浪浮标、污染(或称水质)浮标等。
立体海洋观测系统有集中的信息系统和预报系统。各种各样的传感器测到数据,然后集中起来,用计算机按一定的模型计算,得到标准化的资料。这些资料可以在当时用于分析,也可以存在数据库里,供以后使用。
中国海洋观测站
观测海洋是十分重要的,有了实时资料,海洋预报中心就可以发出海浪、海水温度和海冰等海况的预报,我国中央电视台第一套节目每天中午都发布一次海况预报。如果发生风暴潮等灾害,可以提前发出预警,使沿海人民及早采取防范措施,以减少灾害所造成的损失;根据大洋里风浪的情况,可以对远航的轮船进行航线预报,也叫气象海洋导航,使船长能选择最安全、最经济的航线;把海洋观测得到的大量历史资料积累起来,用统计学方法进行推算,可以得出某一海区或港口多年一遇的最恶劣的海况数据,根据这些数据设计出来的海洋工程结构是最合理、最经济、最安全的。因此,可以说海洋观测是海洋工程中最基本的技术。
6. 2.什么叫海洋观测仪器有哪些种类的海洋观测仪器
你好:
海洋观测仪器
oceanographic instruments
逯玉佩
观察和测量海洋现象的基本工具。通常指采样、测量、 观察、 分析和数据处理等设备。海洋观测仪器主要是为了满足海洋学研究的需要而设计的,有些国家以“海洋学仪器”命名,中国习惯上称为“海洋仪器”。
发展概况 早在15世纪中叶,便有人研制测量海水深度的仪器但是比较简便而又可靠的测温工具,是1874年研制出的。随后又设计出埃克曼海流计。20世纪初研制出了。1938年研制出机械式,从而可以快速观测水温随深度的变化。直到20世纪50年代以前,海洋观测主要使用机械式仪器,回声测深仪是唯一的电子式测量装置。60年代以后,海洋观测仪器在设计上大量采用新技术,逐步实现了电子化。海洋观测仪器的电子化,是从单项测量仪器开始的,以后又发展多要素的综合仪器,例如。今后,海洋观测仪器将不断改进结构,降低功耗,增加可靠性,除传感器多样化外,信号形式和仪器终端将日趋通用化,并进一步向智能化发展。
海洋观测仪器的种类 海洋观测仪器可以按照结构原理分为声学式仪器、光学式仪器、电子式仪器、机械式仪器,以及遥测遥感仪器等。还可以根据运载工具不同,划分成船用仪器、潜水器仪器、浮标仪器、岸站仪器和飞机、卫星仪器。其中船用海洋观测仪器品种最多,按其操作方式又可分为投弃式、自返式、悬挂式、拖曳式等。投弃式仪器使用时将其传感器部分投入海中,观测的数据通过导线或无线电波传递到船上,传感器用后不再回收。自返式仪器观测时沉入海中,完成测量或采样任务后卸掉压载物,借自身浮力返回海面。悬挂式仪器利用船上的绞车吊杆从船舷旁送入海中,在船只锚碇或漂流的情况下进行观测。拖曳式仪器工作时从船尾放入海中,拖曳在船后进行走航观测。
海洋观测仪器对使用者来说,通常按所测要素分类。例如测温仪器、测盐仪器、测波仪器、测流仪器、营养盐仪器、重力和磁力仪器、底质探测仪器、浮游生物与底栖生物仪器等等。将它们归纳起来可以划分成 4大类,即海洋物理性质观测仪器、海洋化学性质观测仪器、海洋生物观测仪器、海洋地质及地球物理观测仪器。
海洋物理性质观测仪器 用于观测海洋中的声、光、温度、密度、动力等现象。因为海水密度不便直接测定,通常用温度、盐度和压力值计算得到,所以盐度取代密度成为一个必测参数。观测海水温度、盐度和压力的仪器,20世纪60年代以前只能用颠倒温度表、、滴定管和机械式深温计(BT),现在则用电子式盐温深测量仪(STD或CTD)等船只走航测温常用投弃式深温计(XBT)。空中遥感观测海水温度则用红外辐射温度计。岸边潮汐观测使用浮子式,外海测潮采用压力式自容仪,大洋潮波的观测依靠卫星上的雷达测高仪。海浪观测仪器的品种比较繁杂,有各种形式的测波杆、压力式、光学原理的测波仪、超声波式测波仪。近年用得较多的是加速度计式测波仪。海流观测相当困难,或用仪器定点测量,或用漂流物跟踪观测。定点测流是海洋观测中常用的办法,所用仪器有转子式海流计、电磁式海流计、声学海流计等,其中最流行的是转子式仪器(见)。海洋声参数仪器主要有,用以观测声波在海水里的传播速度。海洋光参数仪器有透明度计和照度计,用以观测海水对光线的吸收和海洋自然光场的强度。
海洋化学性质观测仪器 海洋观测中所用的化学仪器,主要用来测定海水中各种溶解物的含量。60年代以前,除少数几项可在船上用滴定管和目力比色装置完成外,大部分项目要保存样品带回陆上实验室分析。60年代以后,调查船上逐渐采用船用、船用pH计、溶解氧测定仪,以及船用分光光度计和船用荧光计。近年来船用单项化学分析仪器与自动控制装置相结合,形成船用多要素的自动测定仪器。这种综合仪器还可配备电子计算机,提高其自动化程度。船用化学分析仪器的工作原理大致分两类:一类用传感器(主要为电极)直接测定化学参数;一类通过样品显色进行光电比色测定。目前,海水中的各种营养盐靠比色仪器测定,pH值、溶解氧、氧化-还原电位等利用电极式仪器测定。
海洋生物观测仪器 海洋生物种类繁多,从微生物、浮游生物、底栖生物到游泳生物,相应有不同的观测仪器。海水中的微生物需采样后进行研究,采样工具有复背式采水器和无菌采水袋。浮游生物采样器主要有浮游生物网和浮游生物连续采集器。底栖生物采样使用海底拖网、采泥器和取样管。游泳生物采样依靠鱼网,观察鱼群使用鱼探仪(见)。海洋初级生产力的观测,除利用化学仪器测营养盐,利用光学仪器测定光场强度之外,还用荧光计测定海水中的叶绿素含量。为了观察海洋生物在海中的自然状态,需要利用水中摄象,有时还得使用。可使人们在海底停留较长时间,是观察海洋生物活动情况的良好设备。
海洋地质及地球物理观测仪器 底质取样设备是最早发展的海洋地质仪器,分表层取样设备与柱状取样设备两类。表层取样设备又称采泥器,有重力式采泥器、弹簧式采泥器和箱式采泥器,其中箱式采泥器能保持沉积物原样。底质柱状采样工具有重力取样管、振动活塞取样管、重力活塞取样管和水下浅钻,有一种靠玻璃浮子装置使柱状样品上浮的重力取样管称为自返式取样管。结合底质取样,还可进行海底照相。回声测深仪是观测水深、地貌和地层结构最常用的仪器。又称地貌仪,安装在船壳上或拖曳体上,可以观测海底地貌。利用声波在海底沉积物中的传播和反射测出地层结构。海洋地球物理仪器有重力仪(见)、磁力仪(见)和地热计等。地热计结构比较简单,将热敏电阻安放在钢质探针的顶端,靠重力作用插入海底,便能测出海底沉积物的温度。
谢谢
7. 海浪观测和潮汐观测如何区分
海浪是由于风力造成的,随时根据风力的变化而变化,观测的是波浪的峰值和低谷。潮汐是由于月球的引力造成的,观测的是海平面的整体上升和下降幅度
8. 海洋仪器中有哪些黑科技很赞
ARGO浮标,是海洋仪器工程界的杰作。布放时只要丢在关注区域(放置play),平时随波逐流,定时沉入海底2000米深,下沉和上浮时观测温度、盐度和压强等参数(新型的ARGO还可以搭载溶解氧、营养盐、叶绿素等探头),浮到表层时通过卫星传输数据。目前全球已有近4000个ARGO浮标,分布在全球大洋中。这些浮标是由不同国家的不同机构布放的,大部分是美国,日中法英等国也有。永久改变了物理海洋观测的海洋装置。这玩意种类比较多,有测海流的,主要是大洋环流,有搜救用的,有监测溢油的,设计也很精巧,主要利用浮力以及水的作用力,流体力学跟结构力学结合的很好,尽力保证浮标能追随着流体,保持相同的速度运动,便于监测。
9. 查别人的海浪是否安全
摘要 您好,海浪监测仪器较多,如浮标式、声学式、雷达式、压力式等。九五以来在国家863计划中设立海洋监测技术主题,极大地促进了海洋观测技术和仪器设备的发展。形成具有自主知识产权的海洋监测设备产品,接近或达到国际先进水平。目前,在常规观测和工程技术领域,测波浮标是海浪监测的主力军。
10. 海浪观测有哪些仪器
1、浮标测波仪:测波面加速度变化(放在水面,跟随波面测定波面的加速度变化)
2、悬线测波仪:测电容变化。悬线入水,电容变化量与进水高度有关,订正后得到波高。
3、压力式测波仪:波动中压力变化。仪器固定,压力变化反应波高变化。
4、人工观测:目测;用光学测波仪:与浮筒配合,确定仪器与浮筒的位置、俯视角、与平均海面高度,看浮筒位置的变化推算波高(三角原理)
5、遥感:高度计(有效波高)、合成孔径雷达(方向谱)、地波雷达(有效波高和波向)