1. 测井仪是什么有生产测井仪的厂家吗
测井仪是完成测井作业的仪器。
测井仪分为地面仪器和井下仪器。
测井是为了探知钻井中地层界面的特性,划分地质剖面的一种工程作业,通常有电法测井、放射性测井、声波测井、成像测井、工程测井(井径、井斜)。
通俗的说,如果打了一口油井,油层的准确位置是未知的,这时候需要通过测井,对取得的各种资料进行综合解释判断出油层的位置。当然如果打水井就要探知水层的位置,诸如此类。。。。。。
国内的测井仪生产厂家主要有CPL中油测井有限责任公司、北京环鼎科技有限公司、新乡22所、胜利伟业等厂家。
国外的主要有斯伦贝谢(代表世界领先水平,测井装备马克斯500)、贝克·阿特拉斯(测井装备5700)、哈里伯顿(测井装备excell2000)等。
2. 石油测井需要用的仪器
石油测井需要用的仪器可以分为生产测井和裸眼测井,主要是针对不同的油田开发阶段。
裸眼测井仪器外径比较大,外径与适用的井筒压力有关,通常的耐压140MPa标准下,国内外仪器一般都是外径89mm、内径76.2mm、材料是17-4PH 不锈钢,如测井仪器有推靠、或者扶正的话,该部分会稍粗,但是其他部分(电子线路)一般都是89毫米的。如果耐压指标是160MPa,仪器外径可以增大到92毫米,只是将外壳加厚,内径与89毫米的外壳一致。
3. 中地英捷系列测井仪
北京中地英捷物探仪器研究所
PSJ-2 型数字测井采集控制系统
PSJ-2 型数字测井系统是北京中地英捷物探仪器研究所成熟的主打产品,经过 5 年多的批量生产,该产品遍布我国 30 多个省、市、自治区,正在为我国的煤田、水文、金属及工程勘探等测井工作发挥重要作用。该产品还随我国施工队伍,进入亚洲、非洲等多个国家的资源勘探测井工程,以它价廉物美、稳定可靠的特点,倍受国内外用户的青睐。
地球物理仪器汇编及专论
PSJ-2 型数字测井系统由野外作业的地面仪器、下井仪器和室内资料处理等三部分组成。地面仪器含采集控制系统和绞车系统,下井仪器(简称探管)含密度、声波、井斜等各种方法探管,室内资料处理部分包括计算机、专用软件、打印机或绘图仪。
PSJ-2 型数字测井采集控制系统包括给下井仪供电、控制、通讯的采集记录仪(简称采集面板)、控制绞车的绞车控制器、采集记录的便携电脑和实时打印机。该系统可以控制 30 多种探管,完成深度达 3000m的各种测井任务。采集面板由微处理器控制,在采集输出同时,还将数据存储在内部掉电非易失存储器备份,可以直接控制并口针式打印机实时打印曲线,该功能在交通不便的山地,可以省去便携电脑而独立完成测井任务。绞车控制器控制 500m、1500m、2500m、3000m等绞车,配Ф4.75mm、Ф5.6mm的 4 芯铠装电缆。提升速度可达 2000m/h,最大提升力 5000N。
基本参数
PSJ-2型数字测井绞车系统
测井绞车是数字测井系统中重要的提升和下放设备,负责下井仪器的提升和下放,所有下井仪器的供电及信号传输均要通过该系统完成。北京中地英捷物探仪器研究所的测井绞车,结构紧凑、功能齐全、控制灵活、操作方便。按载缆长度分为500m、1500m、2500m和3000m,用户根据需要还可以选择电缆的型号,一般为Ф4.75mm和Ф5.6mm的4芯铠装电缆。
该绞车具有4档机械变速,分别是高、中、低和空档,配合绞车控制器的无极调速控制,电缆的升、降速度在0~2000m/h范围可调。空档和手刹制动的设计,使得测井现场的操作更方便、灵活。该绞车的排缆功能,使得电缆在卷筒上整齐排布,既美观又能延长电缆的服务寿命。
地球物理仪器汇编及专论
基本参数(以2500m绞车为例)
PSMD系列密度三侧向组合测井仪
密度三侧向测井仪在煤田测井中被称为煤探头,是煤田测井中核心仪器之一。该仪器组合了补偿密度、聚焦电阻率、自然伽马和井径等四种参数,输出八条曲线,它们是自然伽马计数率、井径、聚焦电导率、聚焦电阻率、三侧向电压、三侧向电流、长源距计数率、短源距计数率。
地球物理仪器汇编及专论
根据康普顿—吴有训效应,中等能量的伽马射线经地层散射后的射线强度的对数与地层密度成线性关系,这就是密度测井的测量原理。该仪器采用长、短源距双探测器贴井壁测量,长、短源距探测器受井壁和泥饼的影响基本相同,经刻度,即可消除钻孔对密度测量的影响,这就是补偿密度的测量原理。地层中煤与围岩密度差别大,用密度参数很容易划分出煤层。北京中地英捷物探仪器研究所生产有三种密度三侧向组合测井仪,它们适应不同的井径和井深,密度测量精度达0.03g/cm3。
基本参数
PSBZ-1补尝中子测井仪
地球物理仪器汇编及专论
中子测井是利用中子射线在物质中的减速、扩散和俘获特性,研究地层孔隙度的测井方法。同位素中子源发射的中等能量中子射线一般要经历减速、扩散和俘获三个过程。中子射线在减速过程中主要是弹性散射,氢是所有元素中最强的减速剂,这是中子测井方法的重要概念。快中子减速为低能的热中子后,速度不再降低,处于类似于分子的热运动状态。热中子由浓度高的区域向浓度低的区域迁移运动,称为扩散。热中子在扩散过程中,很容易被原子核俘获,俘获中子的原子核,释放出伽马射线回到稳定的基态。补偿中子—中子测井,是利用两个不同源距的探测器探测中子的浓度,然后利用两个探测器的计数率比值,消除环境因素如泥饼、井径等的影响。该比值反映了地层内热中子密度随距离衰减的速率,与地层含氢量的对数有近似的线性关系。一般地层的模型为砂、泥、水,氢元素存在于空隙内的流体如水、油、气中,因此根据含氢量可以确定地层的孔隙度。
基本参数
PSV系列声速测井仪
声速测井是测量岩层表面滑行纵波的传播速度,从而划分岩层、判断岩性、计算岩石的抗压强度等。该仪器设有三只声波换能器,其中一只发射换能器,两只接收换能器。发射换能器在高压脉冲激励后,产生振荡,发射一列超声波。超声波经泥浆进入井壁岩层时,产生透射,当透射角等于90°时,透射波延井壁表面滑行传播叫做滑行波。滑行波的任何一点都可以看作一个新的点振源,因此滑行波在泥浆中产生一簇平行的折射波。两只接收换能器测量折射波到来的时差,由此计算出岩层的纵波传播速度。北京中地英捷物探仪器研究所生产有三种声速测井仪,它们适应不同的井径。
地球物理仪器汇编及专论
基本参数
测量参数
PSCL-1电磁流量测井仪
根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端产生感生电动势,其方向由右手定则确定,其大小与磁场的磁感应强度、导体的运动速度成正比。导电液体的流动可以看作是导体在磁场中切割磁力线的运动。因此,测量的感生电动势与液体的流速成正比。
地球物理仪器汇编及专论
为避免电解质液体被极化造成的误差,该仪器采用低频方波励磁,测量电路经相敏整流,得到与液体的流速成正比的电压输出,经内置微处理器处理后,以数字方式上传井上仪记录。由于仪器无活动部件,因此,测量精度高、范围宽,响应速度快,不受被测液体的温度、压力和粘度的影响。但不适宜低电导率液体,如石油的测量。
基本参数
PSXDWL系列连续孔斜组合测井仪
仪器内安装三个方向相互正交的磁阻传感器,测量地磁场在三个传感器的分量,通过坐标旋转,求得方位角,即井斜方位角。仪器内还安装两只加速度计,根据加速度计的输出信息可以求得它与重力加速度方向的夹角大小,即井斜顶角。该仪器还组合了井温、井液电阻率、自然电位和电极系。
地球物理仪器汇编及专论
基本参数
PS2521陀螺测斜仪
陀螺测斜仪是利用高速旋转陀螺的惯性,测量方位的测井仪器,它不受磁环境影响。该仪器采用了动调式绕性陀螺,自动寻北、低飘移是绕性陀螺较传统框架陀螺的优点。
地球物理仪器汇编及专论
基本参数
PSGZ系列固井质量检查测井仪
该仪器组合了自然伽马、首波幅度、单收时差、双收时差、磁定位接箍和全波列等参数,用于评价固井质量的优劣。自然伽马用于分层对比,磁定位接箍用于定位,声幅用于检测第一界面,变密度用于检测第二界面。声幅在自由套管波幅的30%以下被认为固井质量合格,全波列绘制的变密度图如果可以看到地层波,则认为第二界面合格。北京中地英捷物探仪器研究所生产有三种固井质量检查测井仪,它们适应不同的井径和井深。
地球物理仪器汇编及专论
基本参数
重要技术参数
4. 核磁共振测井方法
(一)测井仪器
1.组合式核磁共振测井仪(CMR)
CMR测井仪采用磁性很强永久磁铁产生静磁场,磁体放入井中,在井眼之外的地层中建立一个比地磁场强度大1000倍的均匀磁场区域,天线发射自旋回波脉冲序列(CPMG)信号并接收地层的回波信号。CMR原始数据由一系列自旋回波幅度组成,经处理得到T2弛豫时间分布。T2分布为主要的测井输出,由此T2回波串可导出孔隙度、束缚流体饱和度、自由流体饱和度和渗透率。
CMR为小型滑板型仪器,连接长度4.33 m,重148 kg,额定温度177℃,额定压力138 MPa,其结构及横截面见图5-54。
CMR必须用弓形弹簧、用偏心器或动力井径仪进行偏心测量。探测器极板最大宽度5.3 in,带有滑套弓型弹簧的最大总直径为6.6 in。
对于一般的井眼条件,推荐的最小井径为6.25 in。当井眼条件很好,CMR可在5.785 in以下的井眼中进行测井。
(1)CPMG脉冲序列参数的选择
核磁共振测量为周期性的,而不是连续的。测量周期由等待时间和自旋回波采集时间段组成。采集时间比等待时间短许多。在等待时间段,氢核重新回到仪器磁场方向。等待时间根据孔隙流体的T1而定。在采集时间段,仪器的发射线圈快速发出自旋回波。隔一定的时间段(回波间隔)收集回波。
等待时间、采集的回波数和回波间隔被称为脉冲序列参数。这些参数决定了NMR的测量,必须在测井前加以说明。参数的优化选择与岩性和流体类型有关,并与CMR仪是连续测量还是点测有关。
图5-54 实验型脉冲NMR仪器
1)测量周期。为校正电子路线的偏置,自旋回波序列成对采集,称为相位交替对。
采集一个相位交替对的总周期时间为
地球物理测井
式中:TW为等待时间,s;NE为回波数;TE为回波间隔,s。
周期时间长可提高CMR测井的精度。但是,对于环境变化大的井,长周期导致低测速和长的点测停留时间。
2)测速。在连续测井中,调节仪器测速确保在井下每个采样率段(通常为6 in,即15.24 cm)中完成一次新的测量周期。最大测井速度为
地球物理测井
图5-55为最大测速与等待时间和采集回波数的关系。大多数CMR测井速度在45.7~183 m/h之间。在束缚流体测井模型下测速可达244 m/h以上。
3)脉冲参数选择的约束条件。①回波间隔。为提高对快速衰减组分(即小孔隙及高黏度油)测量的敏感性,CMR测井通常采用最小回波间隔(0.28 ms)。随着硬件的改进,期望最小回波间隔随之减小。为增强扩散弛豫,也增长回波间隔。这适用于不含大量微孔隙的纯净地层。为保持对小孔隙的敏感性,回波间隔很少超过1ms。②回波数。采集的回波灵敏度为:200,300,600,1200,1800,3000,5000 和8000。回波间隔0.28 ms时对应的采集时间分别为:0.056 s、0.084 s、0.17 s、0.34 s、0.50 s、0.84 s、1.40 s和2.24 s。在连续测井时采集的最多回波数常为1800。计算机模拟和现场经验表明:再增加回波数对CMR孔隙测井造成的变化可忽略。③等待时间。理想情况下等待时间足够长,以使氢核完全极化。因为不完全极化的氢对自旋回波幅度的贡献不完全。实际上,等待时间受制于井场效率的要求,对不完全极化要进行校正。通常,等待时间比孔隙流体的平均T1长三倍。④最小等待时间。由于发射线圈频宽比的限制,最小等待时间约为采集时间的两倍。实际上,这不成为一种限制,因为等待时间和采集时间均由孔隙流体的弛豫时间控制(T1和T2),具有长T2的孔隙流体也有长T1,因此需要长的等待时间。
图5-55 最大测速与等待时间和采集回波数的关系
4)参数选择。脉冲序列参数选择基于预工作计划和现场测量进行。
预工作计划包括估算孔隙水和侵入带烃(原有烃或油基泥浆)的平均弛豫时间(平均T1)。对于一般的仪器操作,等待时间近似为这两种T1中较大值的四倍。
在估算孔隙流体弛豫时间时,通常假设岩石为水湿润性。在此情况下,烃以体积速率弛豫,油的体积弛豫根据储层条件下的黏度估算。气体的体积弛豫与储层温度和压力有关。T1和T2与流体黏度的关系曲线见图5-49。
脉冲序列检查常常通过在产层段的一次长等待时间测井后再用短等待时间重复测井实现。产生精确CMR孔隙度和小的极化校正(例如小于2 p.u.)的最小等待时间用于主要测井。
在一个地区或地层几次CMR测井之后,常可确定出最优序列。该序列便可用于后续CMR测井。
下面介绍已成功用于现场测试的几种预定义脉冲序列。
A.具有中至高黏度油(大于4 mPa·s)的储层。中高黏度油的T1值相对短,CMR脉冲序列主要根据孔隙水的T1选择。
孔隙水的T1由面弛豫而定,它随着孔隙尺寸和岩性不同而变化。碳酸盐岩的表面弛豫比砂岩弱,需要较长的等待时间。当岩石具有很大孔隙时(例如孔洞性碳酸盐岩),弛豫时间接近体积水的值(为已知的温度函数)。但是,CMR仪探测侵入带,其中原生水被钻井泥浆滤液驱替,由于滤液中存在溶解的顺磁离子,因此减小了体积泥浆滤液的T1。
实际上,孔隙水的T1值是很难确定的,因此脉冲序列根据适用于大部分井下环境的最小周期时间而定。根据经验,推荐用于连续测井的脉冲序列见表5-3。表中第二列为油的黏度阈值,超过阈值需要较长的等待时间。如果储层含有特别大孔隙(例如,高渗透率、未固结砂岩和孔洞碳酸盐岩),也需要较长等待时间。
表5-3 常规连续测井
B.具有低黏度油(小于4 mPa·s)储层。当储层含轻油或当用油基泥浆钻井时,CMR脉冲序列根据油的T1确定。需要长的等待时间和慢的测速。表5-4为MAXIS测井软件中预定义的脉冲参数。若已知储层条件的油黏度,该序列的等待时间须修正。这时,由图5-49估算平均T1,而等待时间设定为3T1。当井眼条件允许使用较高测速,推荐使用9 in采样率,测速提高1.5倍。
表5-4 MAXIS测井软件中预定义的脉冲参数
C.含气储层。在潜在含气层中,CMR测井的主要应用是识别传统测井曲线(例如中子-密度)未示出的气层。CMR孔隙度低估了气层的孔隙度。原因如下:气体氢指数明显小于1;在较宽的温度和压力范围内,气体具有长T1(大于3 s),因此在连续测井中不能完全极化;由于扩散影响,气体T2较短(约400 μs)。因此高的T1/T2比使极化校正失效。
气体信号幅度值为
地球物理测井
式中:HI为气体氢指数;Vg为侵入域的气体体积,p.u.;T1effect为等待时间中极化气体的部分影响,即1-exp(-Tw/T1g)(T1g为气体的T1;Tw为等待时间)。
许多环境中,气体信号太小而不能被检测到,这发生于浅地层(气体氢指数太小)和低至中孔隙地层(含少量残余气体积)中。这些地层中,最有效的方法是用相对短的等待时间测井,只要有足够时间使水极化即可(例如,砂岩或碳酸盐岩序列)。这使气信号幅度变为最小,CMR孔隙度的减小可能是由于气体影响造成的。
在深部高孔隙地层中,气信号可能大于3 p.u.或4 p.u.。在这些地层中,单独的CMR测井通过改变等待时间和回波间隔就可识别出气层。
用这种方法通过改变等待时间而改变T1分布。第一次测井用使水充分极化的一种等待时间(例如砂岩或碳酸盐岩序列)。第二次测井用一种较长的等待时间,以增高气信号的幅值。于是通过第二次测井得出的CMR孔隙度的增量可识别出气体。第二次测井的等待时间应选择能得到至少4p.u的额外气信号。额外气信号计算如下:
地球物理测井
式中:T1w为第一次测井的等待时间;T2w为第二次测井的等待时间;T1g为气体的T1。
在良好的环境下,通过处理不同回波间隔的两次测井采集的自旋回波序可以计算出孔隙流体的扩散系数(Flaum等,1996)。于是通过其与油和水相关的高扩散系数可识别气体。4 p.u.的最小气信号是希望值,所需的等待时间由等式(5-42)计算。通常需要4 s或5 s的最小等待时间,两次测井都用相同的等待时间,表5-5中的脉冲序列已成功用于几种高孔隙砂岩中计算扩散系数。
表5-5 不同回波间隔测井
D.束缚流体。束缚流体具有低T1,通常在砂岩和碳酸盐岩中分别小于50 ms和150 ms。因此,束缚流体测井曲线用短等待时间、高测速的测量得出。束缚流体测井的推荐参数见表5-6。
表5-6 束缚流体测井
5)点测参数选择。进行点测是为提高CMR孔隙度测井精度并获取详细的T2分布。测量原理与连续测井相同,但点测没有周期时间的限制。一般使用较长的等待时间,收集更多的回波数以便与连续测井进行比较。表5-7给出预定义的砂岩,碳酸盐岩和轻质油/油基泥浆的脉冲序列。
表5-7 点测脉冲序列
(2)信号处理
在CMR仪器研制的同时,必须设计一种经济完整的数据采集和信号处理方法,用于分析以CPMG脉冲序列期间采集到的成百上千的自旋回波幅值。信号处理主要是计算T2分布曲线。
在仪器研制的早期就意识到有关反演方法不适于CMR测井数据的实时处理。特别是实时计算连续T2分布需多台计算机完成大量采集数据的计算。由于成百上千的自旋幅值组成的一个自旋回波序列仅包含几个线性相关的参数,而NMR测量的核心参数近似于线性,所以自旋回波数据有冗余量,它可被压缩成几个数值而不丢失信息。用现场的计算设备可实时地利用采集的压缩数据计算T2分布。
数据压缩算法必须适应性强,且可与实时数据采集和处理环境兼容。井下数据压缩使用仪器电子盒内的数字信号处理芯片,这需要一个快速的压缩算法。井下数据压缩减少了对遥测能力的需求,及磁盘和磁带的存储量。未压缩数据也能传输到井下并存储在磁盘中,用于后期处理。一种新的反演和相关数据压缩算法——窗处理算法(WP)已开发出来。
通过确定在预选T2值处的信号幅度计算出T2分布。再由幅度拟合出一条曲线以显示出一连续函数。预选的T2值等间隔位于T2min和T2max之间的对数坐标上。预选T2值的数目为分布中的组份数。
T2的计算和测井曲线输出首先选择一组处理参数:多指数弛豫模型中的组份数目;计算的T2分布中的T2最大值T2max和最小值T2min;自由流体截止值;输入的T1/T2;泥浆滤液的弛豫时间。输入上述参数用于计算T2分布、自由流体和束缚流体孔隙度的相对数量、平均弛豫时间。
1)组份数。现场数据的模拟和处理指出,若使用至少10个组份模型,组份数对CMR测井输出的影响可以忽略。若要得到平滑T2分布则必须增加更多的组份。通常,连续测井用30个组份模型,点测使用50个组份模型。
2)T2min。根据测量对短弛豫时间固有的敏感性确定最小T2值,这与测量的回波间隔有关。当使用回波间隔为0.28 μs时,T2min为0.5 μs。
3)T2max。T2max值的选择在T2分布中的最长弛豫时间与测量可分辨的最长弛豫时间之间取折中,后者根据采集时间(即采集的回波数和回波间隔)确定。模拟显示在合理的取值范围内,CMR测井输出对T2max值不敏感。对采集600~1800个回波的连续测井,T2max取3000 μs。对于点测,一般采集3000~8000个回波,T2max定为5000 μs。
4)T1/T2比。极化校正时需输入T1/T2。当储层含黏滞油时,推荐T1/T2定为2。当存在轻质油,T1/T2增至3。
(3)刻度和校正
在车间中用含氯化镍稀释液的一种混合物完成精确刻度。溶液的信号幅度代表标准的100 p.u.。
在测量周期的等待时间中完成电子刻度。在此期间,一个小信号被送入位于天线上的一个测试线圈中。信号由天线采集并被处理,然后信号幅值被用于系统增益中由操作频率、温度和周期介质电导率产生的变化进行校正。
信号幅度必须作温度校正、磁场强度校正(磁场强度随温度和附在磁体上金属碎屑量而变化)、流体氢指数校正(当地层水或泥浆滤液矿化度较高时,该校正十分重要)。
图5-56 MRIL仪器框图
此外,CMR测井须对氢核不完全极化进行校正。
(4)测井质量控制
测井质量控制包括:仪器定位、采样率和测速、叠加与精度、仪器调谐、泥浆滤液弛豫时间等。
2.核磁共振(成像)测井(MRIL)
(1)仪器说明
MRIL仪器,由三部分构成:探头(长8 in,直径为4.5 in或6.0 in);长13 ft、直径3.626 in的电子线路短节和长10 ft、直径为3.626 in的储能短节(图5-56)。
仪器的探头由永久磁铁、调谐射频(RF)天线和测量射频磁场幅度的传感器组成。磁场呈圆柱形轴对称,磁力线指向地层,磁场幅度与径向距离的平方成反比。调整RF磁场形状,使其符合磁场空间分布,且使RF磁场与静磁场相互垂直,这种结构形成一个圆柱形共振区域。其长度为43 in(或24 in,这取决于RF天线的张角)、额定厚度为0.04 in。有两种探头可供选择,直径为6 in的标准探头,用于直径7.785~12.25 in的井眼;直径为4.5 in的小井眼探头,用于直径6.0~8.5 in的井眼。仪器的工作频率为650~750 kHz,共振区域半径19.7~21.6 cm(对于标准探头)。
仪器为数字化仪器,原始回波按载波被数字化处理,所有的后续滤波和检测均在数字域实现。
(2)仪器特点
1)多频工作。MRIL的C型仪器具有灵活的变频特性,可从一个频率跳变到另一个频率。对于17×10-4 T/cm的额定磁场梯度,一个15 kHz的频率跳跃对应于共振区域半径0.23 cm的变化,该设计也支持在两种频率下同时测量,双频测量的几何图见图5-57。
2)测低阻井。低阻井相当于一种对射频天线的负载,负载常用天线因子Q表示。在直径8.5 in的井眼中,Rm>10 Ω·m的淡水泥浆井眼中天线Q值为100;而在Rm=0.02 Ω·m的井眼中,Q值变为7,低Q值对MRIL信号质量有不良影响。
3)信噪比(SWR)高。测量频率为725 kHz时,在淡水泥浆井眼环境下,仪器的单回波信噪比(SWR)为70∶1。计算结果经多次回波提高了信噪比,其自由流体指数(FFI)的信噪比为240∶1。
4)调幅与调相功能。C型仪对每个回波提供完全幅度和相位调制。
5)测速快。测速取决于MRIL输出的单次实验信噪比、期望的测井精度纵向张角及地下T1能允许的测量周期时间Tc。在单一共振体内,要使恢复达到95%以上,恢复时间TR必须满足:
图5-57 MRIL双频测量示意图
地球物理测井
由于多频工作的结果,周期时间稍长于标准化所用频率数的T2。在双频工作情况下,TC=TR/2。在T1=500 ms、1000 ms和2000 ms的条件下,地层极化完全恢复对应于周期为750 ms、1500 ms、3000 ms。依测井环境不同,C型仪测速约为B型的4.4~14.4倍。
6)垂向分辨率高。通过减小射频天线的纵向张角可得到更高的分辨率,目前探头设计张角为43 in,C型仪可兼容更小的张角(24 in)。
(3)脉冲参数选择
MRIL采用CPMG脉冲序列完成对T2的测量。其CPMG脉冲参数选择方式基本上与CMR的脉冲参数选择方式相同。
图5-58 双频MRIL探头及探测区域剖面图
C型仪的回波间隔时间约为1 ms。每个深度测量点上,记录的回波串为:在淡水泥浆井眼中约为1200个回波;在咸水泥浆井眼中,约300~500个回波。
(4)MRIL的垂向分辨率和信噪比
NMR仪的垂向分辨率受控于永久磁场及射频磁场的形状,即决定于磁体物理尺寸及射频天线。理论上,MRIL仪的探测体积为一圆环(图5-58),圆环大小受射频天线的张角影响。
MRIL数据的垂向分辨率和信噪比不仅受控于NMR的物理特性和传感器的设计,而且与数据采集及处理过程有关。C型仪的操作模式为双频双相交替方式。脉冲序列依次为:频率2,原相位;频率1,原相位;频率1,反相位;频率2,反相位。相位交替改变了NMR回波的符号,而干扰信号的相位不变。通过改变所有反向回波的符号并将所有测量求和,相干干扰被消除。根据井眼环境,在完成回波数据转换之前,需要进行附加的求均值以提高信噪比。在井场或后续处理中应用滤波技术进行后续的处理。
使用时序分析法通过比较某一特定层段中两次或多次测井数据可以定量评估垂向分辨率和信噪比。在0.9 m·min-1、3.0 m·min-1和9.1 m·min-1测速下分别进行重复测井得到三对测井曲线,用时序分析计算出相关系数和信噪比与空间频率的关系,平均低频信噪比特征见表5-8。
表5-8
(5)仪器的刻度和环境影响
C型MRIL用100%的标准水进行刻度,水装于一个高1 m、长2 m、宽1 m的屏蔽容器内(在调幅频带内操作)。改变井眼负荷的方法是加入井眼流体或在射频天线上加电阻。在存在井眼负载时,将回波幅度与已知的标准水的简单指数衰减比较进行刻度。仪器还需进行二次刻度。此外,在井场,测井前和测井后还要用标准探头对电子线路进行校对,仪器所有参数都要记录并与标准值比较。
对于使用新的24 in张角的MRIL仪器,实施采集数据进行时序分析现场曲线时可以看出,24 in张角仪器的数据显示出明显的层界,并可分辨出薄层。其时序分析结果见表5-9。与表5-8中43 in张角的结果比较可见,24 in张角的垂向分辨率提高。低频信噪比二者无差别。根据简单的几何推理,我们预计24 in张角的信噪比应降2.5 dB;且信噪比的这种降低与测速无关。测试井的时序分析指出,信噪比降低至小于5 dB。
表5-9
NMR回波幅度随地层温度升高而降低,地层温度与刻度温度之比用于回波输出的校正。MRIL输出对烃密度敏感,故需进行温度、压力对液态烃密度影响的校正;天然气可减小MRIL孔隙度,但不可校正。
(二)信号处理和输出
MRIL测得的原始数据是所接收到的回波串,如图5-59。它是求各种参数和各种应用的基础。
目前C型仪用的信号处理方法是从原始回波串中提取T2分布谱(如图5-60)。
对于一个孔隙系统,可能会存在着多个弛豫组分T2i,每个回波都是多种弛豫组分的总体效应。通常,回波串的衰减速率表现出双指数或多指数特征;所以可以将回波幅度看成是多指数分量之和。
地球物理测井
式中:ai为第i个横向弛豫时间所对应的回波幅度;T2i为第i个横向弛豫时间;n为所划分的T2i个数,通常n取8。
图5-59 MRIL测得的回波串
由一组固定T2弛豫(4 ms,8 ms,16ms,32 ms,64 ms,128 ms,256 ms和512 ms)作出基本函数拟合回波串。这样一组NMR测量信号(回波)Aj(t)(设有m个,m>n)可以得到一组超定方程组,该方程组的最小二乘解求得一组与固定划分的T2i对应的ai,经内插和平滑后得到T2分布谱。每个圈定的T2对应一部分孔隙,各T2分量ai求和经过刻度得到φNMR;FFI为T2大于或等于32 ms对应的孔隙之和,由T2大于截止值的各项ai之和,经过刻度(归一化)得到φFFI;BVI为4ms、8ms和16ms的T2值对应的部分孔隙之和,由T2小于截止值的各项ai之和,经过刻度(归一化)得到φbvi。
图5-60 自旋—回波串的多指数拟合及T2分布谱
通过合理地设置MRIL的测量参数TR、TE,测量两组或多组回波串,得到不同的T2分布谱。对它们进行谱差分或谱位移处理,可以定性地识别储层中流体的类型。
(三)核磁共振测井的测量模式(MRIL-C型仪器)
1.标准T2测井
提供一般的储层参数,如有效孔隙度、自由流体体积、束缚流体体积、渗透率等。
一般选取等待时间TW=3~4 s,标准回波时间间隔Te=1.2 ms,回波个数Ne≥200。
2.双TW测井
根据油、气、水的弛豫响应特征不同,采用不同等待时间TW进行测量,可定性识别流体性质:
短等待时间TWS:水信号可完全恢复,烃信号不能完全恢复;
长等待时间TWL:水信号可完全恢复,烃信号也能完全恢复。
将用两种等待时间(TWS和TWL)测量的T2分布相减,可基本消除水的信号,剩下部分烃的信号,从而达到识别油气层的目的。
3.双TE测井
地球物理测井
式中:T2CPMG为采用CPMG脉冲法测量的弛豫时间;D为地层流体的扩散系数;G为磁场梯度;TE为回波间隔;γ为氢核的旋磁比。
从上式可看出,增加回波间隔TE将导致T2减小;且T2分布将向减小的方向移动(移谱)。由于油气水的扩散系数不同,在MRIL-C型测井仪的梯度磁场中对T2分布的影响程度不一样,采用长短TE测井,油气水的T2分布变化的程度也不同,据此可定性识别流体性质。
(四)核磁共振测井的测量模式(MRIL-P型仪器)
测量模式就是测井期间控制仪器的一系列参数。MRIL-P型测井仪测井时有4种基本测量方式,根据不同的参数组合成77测井模式。
1.DTP方式
为等待时间TW和粘土束缚水模式。它分5个频带2组测量方式(A,PR),4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。在0~3频带上为A组信号(TE、TW自定),共采集16个TW信号。每个周期共有24组回波串。该方式主要用于计算总孔隙度、有效孔隙度;确定可动流体体积、毛管束缚流体体积和粘土束缚流体体积、渗透率等参数。
2.DTW方式
又称双TW模式。该模式采用5个频带3组测量模式(A,B,PR)。4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。在0~3频带上分别采集16个A组和B组信号,A、B组回波间隔TE相同,等待的时间TW不同,A、B之间为长等待时间TWL,B、A之间为短等待时间TWS。每个周期共有40个回波串,根据长、短不同等待时间的T2谱识别油气。
3.DTE方式
又称双TE模式。该模式采用了5个频带3组测量模式(A,B,PR)。4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。0~3频带各采集16个A、B组信号,A、B组共有相同的等待时间TW,不同的回波间隔TE。A组为短回波音隔TES,B组为长回波间隔TEL,共40个回波串。其主要目的是应用两个不同回波间隔的数据作扩散加权,进行气检测等。
4.DTWE方式
又称双TW+双TE模式。该模式采用5个频带5组测量模式(A,B,D,E,PR)。4频带上为PR组信号(TE=0.6 ms,NE=10,TW=0.02 s),共采集8组回波串,用于计算粘土束缚水体积。0~1频带上各采集8个A、B组信号,2~3频带上各采集8个D、E组信号,其中A、B为短TE双TW模式,D、E为长TE双TW模式。共40个回波串。包含了双TE和双TW测井,一次下井可获得所有信息,大大地提高了工作效率。
实际测井过程中,基本测量方式确定后,根据不同的测量参数从77种测量模式中选取合适的模式进行测井。表5-10列出了常见的10种测量模式参数。
表5-10 常用的10种测量模式参数
5. 常规测井仪器一共有几种都包括哪些仪器啊有谁知道请回答
1.压力计(高精度、永久式、压裂式)。
2.超声波流量计。
3.五参数(温度、伽马、磁定位、流量、压力)。
4.产出测井仪(温度、伽马、磁定位、流量、压力、持水、密度、持气率)。
5.注入多参数(温度、伽马、磁定位、流量、压力)。
6.低压综合测试仪。7.示功仪。
8.测调仪(高效测调、边测边调)。
9.井径仪(16臂、18臂、24臂、40臂、60臂)。
10.测厚仪(磁测厚)。11陀螺仪(测斜仪)。12.电磁探伤。
13.声波变密度(声波仪)。14.智能配水器。15.过套管电阻率。16.高压物样取样器。17.电动除垢器。18.液压举升装置。19.电动封隔器。20.张力短节。 21旋转短节。
22.测内径、腐蚀、壁厚、方位、水泥胶结。
23.电缆头、滑套、扶正器、软连接。
24.碳氢比、中子密度、氧活化。25成像测井系列。
以上这些常规测井仪器,西安思坦仪器股份有限公司都生产。
6. 目前用于定向井的测量仪器有哪些
仪器分类
照相单多点
磁性
仪器: 电子单多点:ESS、YSS、RSS 电磁
仪器: 随钻类:有线类:SST、MS3、RSS 测 YST、DOT、DST 量 无线类:泥浆 SPERRY-SUN 仪 脉冲类:SCIENCE
DRILLING 器 GEOLINK QDT YST-48X 电磁波: SPERRY-SUN SCIENCE DRILLING
非磁性 框架陀螺 SRO地面记录陀螺 仪器: BOSS电子陀螺 挠性陀螺 KEEPER 陀螺
TLCX动调式自寻北陀螺 斯伦贝谢
第二编 仪器介绍
第一章 通用部分注意事项
1 凡是进口的ESS,SST,MS3(美国SPERRY-SUN公司产)等测量仪器,其电源都是110伏,绝对不能误用220伏电源为这类测量仪器供电。
2 在现场,连接好测量仪器以后、开机以前,必须用万用表测量其接测量仪器电源的插座,确保测量仪器供电电压为规定电压。
3 TI 热敏打印机电源,一端连接热敏打印机,另一端只能连接110伏的电源。
4 必须要知道所施工的井的磁场强度、磁倾角。陀螺测量,还必须知道所施工的井位的准确地理纬度。 5 YST(包括35mm
25mm,北京海蓝公司产)仪器用220伏交流电。
6 RSS随钻测量仪器(英国瑞塞尔公司产)可采用110伏,220伏交流电供电。
7、DST(包括35mm、25mm北京普利门公司产)采用220伏交流电。
第二章 ESS电子多点测斜仪
第一节 仪器简介
ESS全称为 ELECTRONIC SURVEY SYSTEM 译为电子测量系统简称电子多点(以下简称ESS)。ESS是 NL
SPERRY-SUN公司的一种新型的电磁类电子测量仪器,ESS测量采用电池供电,可以在井眼中连续工作边测量边记录,利用计算机和打印机输出和处理数据。ESS测量的主要原理是利用重力加速度计和磁通门分别敏感地球的重力场和地磁场来测取井斜和方位,ESS可用于定向和井眼轨迹测量,测量方式主要是投测和吊测,该仪器不单能够测取原始数据(井斜、方位、工具面、井温),还可以利用计算机对测量数据进行分析和轨迹处理。处理结果包括:垂深、视平移、水平位移、东西分量、南北分量和闭合方位。
ESS与普通单多点仪器相比有如下优点:
1:操作简便、好学易掌握;
2:测量精度高(精度与电子陀螺 BOSS相同); 3:性能稳定可靠、保证测量成功率;
4:能消除人为读数误差,测量及读取数据速度快; 5:对测量数据能进行井眼轨迹处理;
6:磁干扰的修正能力强。
第二节 主要组成部件及功能
ESS电子多点测斜仪主要由井下探管、电池筒总成、地面计算机及操作软件、TI热敏终端、点阵打印机、中间接口器、探管保护筒总成和辅助工具组成。
井下探管
三维放臵的磁通门、重力加速度计传感元件和温度传感元件,采集井眼井斜角、
方位角、工具面原始信号和井下温度数据,并将原始信号转换成测斜数据,又把测斜数据储存在探管里。
电池筒总成
电池筒总成内装8节2号碱性高能电池,为探管提供电源。它采用了分隔减震的方式,增强了电源的抗冲击性。 地面计算机及操作软件
地面计算机可采用一台兼容的PC 80286或PC
80386型以上台式或便携式计算机,要求硬盘容量20MB以上,技术性能无特殊要求。处理编辑测量数据。
ESSDUMP 软件: 可以通过地面计算机对ESS探管进行单点、多点或MS3随钻三种测量功能的探管软件的装载。ESS 01
是单点测量和探管性能调试软件,ESS 02 是多点测量软件,ESS 05 是MS3随钻测量软件。
MAP 软件: 可以通过地面计算机对ESS探管进行单点、多点测量的初始化设臵与数据输入,测量数据的输出和编辑。
UTV 软件:
可在地面计算机上对MAP软件生成的数据文件进行编辑和进一步修改成不同的测量报表或绘图数据文件。并可运行该软件对测量数据不同方式的修改、比较和分析。
TI 热敏终端
TI 热敏终端作为ESS探管微处理器系统的外部设备,可以作为ESS探管微处理器系统的数据终端。使用它可以从井眼内起出的探管里调出测量数据。
点阵打印机
一般选用EPSON LX—810 打印机作为地面计算机系统的外部设备,为ESS电子多点测斜仪系统提供测量数据报表的输出打印。
探管保护筒总成和辅助工具
探管保护筒总成由无磁材料做成,保护探管免受井眼内泥浆的高压,降低下井仪器冲击力。
辅助工具主要是组装和测试ESS电子多点测斜仪
第三节 仪器特性
ESS探管与地面设备有三种连接方式。可采用不同的方式对ESS探管进行启动、设臵和数据输出,通过地面计算机,TI
热敏终端或点阵打印机,可显示或打印出测量数据或者工作状态数据。地面数据处理系统采用了IBM
兼容机,改善了地面仪器的通用性,在同一地面计算机上可以运行电子多点测量软件和其它定向井、水平井计算软件。ESS电子多点测斜仪具有磁性参数的分析与修正功能,它可以消除来自井下钻具的磁性干扰。
该测量仪器系统具有磁扫描功能,运行磁扫描程序可以检查无磁钻铤、无磁扶正器、仪器外筒等无磁材料的磁化情况。ESS探管微机系统具有错误和状态诊断功能。测量过程中,它可以检测来自井下探管对电源、工作状态和测量环境的信息,并且可以显示或打印出来。
7. 测井有完井和三样,他们各用什么仪器测
完井一般用电阻率、声波、放射性、岩性指示(SP,GE)四方面5-7种仪器测量。特殊需要还要采用成像测井如(mril,star/fmi/emi,xmac/mac/sonic,hrai/hdil/ari)等。
三样是通俗叫法,不规范,西北人民都这麽叫,很不专业,正常叫套后固井质量检测测井,包括变密度、自然伽马,中子伽马,套管接箍。
但愿通过此回答,普及测井常识,扫盲打非,喜欢的顶呀