① 伺服传动技术它分别应用在什么场合
伺服系统最初用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广专到很多领域,特别是自动车属床、天线位置控制、导弹和飞船的制导等。
1,采用伺服系统主要是为了达到下面几个目的:
以小功率指令信号去控制大功率负载。
火炮控制和船舵控制就是典型的例子。
2,在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动。
3,使输出机械位移精确地跟踪电信号,如记录和指示仪表等。
现如今伺服系统按所用驱动元件的类型可分成三大类:
机电伺服系统(数控机床)、液压伺服系统(注塑机)、气动伺服系统(纺织机械)
伺服技术已经历过快速发展时期,因此伺服驱动产品在工业生产中的应用十分广泛,市场上的相关产品种类很多:从普通电机、变频电机、伺服电机、变频器、伺服控制器到运动控制器、单轴控制器、多轴控制器、可编程控制器、上位控制单元乃至车间级和厂级监控工作站等一应俱全。
伺服产品能够满足各种产品制造厂家近乎苛刻的要求,几乎工业生产的所有领域都成为伺服系统的应用对象,如图。
伺服技术应用场合
② 机电一体化系统中伺服机构的作用是什么
1,机电一体化系统中伺服机构的作用是什么?
伺服控制系统是一种能够跟踪输入的指令信号进行动作,从而获得精确的位置、速度及动力输出的自动控制系统。机械传动是一种把动力机产生的运动和动力传递给执行机构的中间装置,是一种扭矩和转速的变换器,其目的是在动力机与负载之间使扭矩得到合理的匹配,并可通过机构变换实现对输出的速度调节。在机电一体化系统中,伺服电动机的伺服变速功能在很大程度上代替了传统机械传动中的变速机构,只有当伺服电机的转速范围满足不了系统要求时,才通过传动装置变速。由于机电一体化系统对快速响应指标要求很高,因此机电一体化系统中的机械传动装置不仅仅是解决伺服电机与负载间的力矩匹配问题。而更重要的是为了提高系统的伺服性能。为了提高机械系统的伺服性能,要求机械传动部件转动惯量小、摩擦小、阻尼合理、刚度大、抗振性好、间隙小,并满足小型、轻量、高速、低噪声和高可靠性等要求。
2,如何保证机电一体化系统具有良好的伺服特性?
在系统设计时,应综合考其性能指标,阻尼比一般取的欠阻尼系统,既能保证振荡在一定的范围内,过渡过程较平稳,过渡过程时间较短,又具有较高的灵敏度。
设计机械系统时,应尽量减少静摩擦和降低动、静摩擦之差值,以提高系统的精度、稳定性和快速响应性。机电一体化系统中,常常采用摩擦性能良好的塑料——金属滑动导轨、滚动导轨、滚珠丝杠、静、动压导轨;静、动压轴承、磁轴承等新型传动件和支承件,并进行良好的润滑。
转动惯量对伺服系统的精度、稳定性、动态响应都有影响。惯量大,系统的机械常数大,响应慢。惯量大,值将减小,从而使系统的振荡增强,稳定性下降;惯量大,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度。惯量的适当增大只有在改善低速爬行时有利。因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。
应尽量减小或消除间隙,目前在机电一体化系统中,广泛采取各种机械消隙机构来消除齿轮副、螺旋副等传动副的间隙。
③ 机电传动系统包括哪些
D 答案解析: 机械传动的作用是传递运动和力,常用机械传动系统的类型有齿轮传动、蜗轮蜗杆传动、带传动、链传动和轮系等。
④ 机电一体化系统的机械传动设计为什么往往采用负载角加速度最大原则
在机电一体化系统中,用于伺服系统的齿轮传动一般是减速系统,其输入是高速、小转矩、输出是低速、大转矩。要求齿轮系统不但有足够的强度,还要有尽可能小的转动惯量,在同样的驱动功率下,其加速度响应为最大。此外,齿轮副的啮合间隙会造成不明显的传动死区。在闭环系统中,传动死区能使系统以1—5倍的间隙角产生低频率振荡,为此,要调小齿侧间隙,或采用消隙装置。在上述条件下,通常采用负载角加速度最大原则选择总传动比,以提高伺服系统的响应速度.