A. 如何调用MATLAB遗传算法工具箱
1、打开MATLAB软件。
B. 雷英杰编著的《MATLAB遗传算法工具箱及应用》第七章的第一个例子
程序倒数第六行应该是variable',还有注释掉倒数12行。把hold on的分号都去掉。
figure(1);
fplot('variable.*sin(10*pi*variable)+2.0',[-1,2]);
nind=40;
maxgen=25;
preci=20;
ggap=0.9;
trace=zeros(2,maxgen);
fieldd=[20;-1;2;1;0;1;1];
chrom=crtbp(nind, preci);
gen=0;
variable=bs2rv(chrom,fieldd);
objv=variable.*sin(10*pi*variable)+2.0
while gen<maxgen
fitnv=ranking(-objv);
selch=select('sus',chrom,fitnv,ggap);
selch=recombin('xovsp',selch,0.7);
selch=mut(selch);
variable=bs2rv(selch,fieldd);
objvsel=variable.*sin(10*pi*variable)+2.0;
[chrom objv]=reins(chrom,selch,1,1,objv,objvsel);
gen=gen+1;
[y,i]=max(objv);
hold on;
%plot(variable(i),y,'bo')
trace(1,gen)=max(objv);
trace(2,gen)=sum(objv)/length(objv);
end
variable=bs2rv(chrom,fieldd);
hold on
grid;
plot(variable',objv','b*');
figure(2)
plot(trace(1,:)');
hold on
plot(trace(2,:)','-.');grid;
legend('解的变化','种群均值的变化')
C. MATLAB遗传算法
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;
clc
clear all
% warning off
%% 遗传算法参数
maxgen=50; %进化代数
sizepop=100; %种群规模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %变异概率
lenchrom=[1 1]; %变量字串长度
bound=[-5 5;-5 5]; %变量范围
%% 个体初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %种群结构体
avgfitness=[]; %种群平均适应度
bestfitness=[]; %种群最佳适应度
bestchrom=[]; %适应度最好染色体
% 初始化种群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 这个是我的测试函数
% 如果有这个函数的话,可以得到最优值
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[];
%% 进化开始
for i=1:maxgen
% 选择操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果显示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函数值曲线 ' '终止代数=' num2str(maxgen)],'fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('函数值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函数值 变量');
% 窗口显示
disp([bestfitness x]);
D. 使用matlab遗传算法工具箱如何加入目标函数中变量的约束条件啊,可否在M文件中加
首先回答你第一个问题:怎么加入变量的约束条件?
打开遗传算法工具箱的窗体中会有下图所示的选项,即是约束条件的编辑
至于添加的方式,这里要重点的提一下,首先将问题抽象成规划问题的标准形式(如果你不懂什么是标准形式的话,建议你去翻阅运筹学那本书,上告诉你什么是标准形式),然后用矩阵语言写出来,最后将矩阵的系数填写到线性不等约束和线性相等约束中,同时定义所求变量x的上界和下界(记住有多少个变量就有多少列,如果你发现有些条件中没有出现某些变量,那么就应该用0补足,这个是matlab解决规划问题与lingo想比较麻烦的一个地方,)。
然后回答你第二个问题:可否在M文件中添加约束条件?
当然可以,界面的东西是为了方便不熟悉matlab编程的人而设计出来的,但是其底层的算法和接口肯定是有的。
碰到不懂的函数,请记得:help函数名
helpga之后会得到一下一些函数
ga
//这个是定义
Syntax //这个是语法也即是调用的规则
x=ga(fitnessfcn,nvars)
x=ga(fitnessfcn,nvars,A,b)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
x=ga(problem)
[x,fval]=ga(...)
[x,fval,exitflag]=ga(...)直接给你将最长的那个吧
x=ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
X是返回所求的解
fitnessfcn是适应度函数
nvars是适应度函数中所含变量的维数
A是不等式约束中变量的系数矩阵,b是不等式约束中不含变量的值矩阵
Aeq是等式约束中变量的系数矩阵,beq是等式约束中不含变量的值矩阵
LB是下界,UB是上界
nonlcon是非线性约束条件
至于options嘛 我也木有用过,其实你也可以不用管的。
懂了木有呢,亲?
E. 用遗传算法工具箱求解一个多目标优化问题,现在需要一个matlab程序,求高人指点
用遗传算法工具箱求解一个多目标优化问题的步骤:
1、根据题意,建立自定专义目标函数,ga_fun1(x)
2、在命令窗属口中,输入
>> optimtool %调用遗传算法工具箱
3、在遗传算法工具箱界面中,分别对Fitnessfunction框内输入@ga_fun1();A框内输入[1,1,1];b框内输入16;Aeq框内输入[];beq框内输入[];Lower框内输入[0,0,0];Upper框内输入[];
4、单击Start。得到x=4.508 y=2.513 z=1.912值。
F. 求解:怎样使用MATLAB中的遗传算法计算器Optimization Tool中的GA——Genetic Algorithm,如图,重谢
比如通过MATLAB遗传算法的思想求解f(x)=x*sin(10pi*x)+2.0,-1<=x<=2的最大值问题,结果精确版到3位小数。
首先在matlab命令权窗口输入f=@(x)-(x*sin(10*pi*x)+2) 输出结果为
>> f=@(x)-(x*sin(10*pi*x)+2)
f =
@(x)-(x*sin(10*pi*x)+2)
接着输入gatool会打开遗传算法工具箱
显示51代之后算法终止,最小结果为-3.85027334719567,对应的x为1.851,由于自定义函数加了负号,所以原式的最大值为3.85027334719567,对应的x为1.851。
不过这是遗传算法得到的结果,每次运行的结果可能会有所不同,而且不一定是确切的最大值。
遗传算法适合应用在一些求最优解比较复杂的问题(常规的算法运算时间过长,甚至无法解决)。
G. matlab遗传算法工具箱及应用的内容简介
本书系统介绍MATLAB遗传算法和直接搜索工具箱的功能特点、编程原理及使用方法。全书共分为9章。第一章至第四章介绍遗传算法的基础知识,包括遗传算法的基本原理,编码、选择、交叉、变异,适应度函数,控制参数选择,约束条件处理,模式定理,改进的遗传算法,早熟收敛问题及其防止等。第五章至第七章介绍英国设菲尔德(Sheffield)大学的MATLAB遗传算法工具箱及其使用方法,举例说明如何利用遗传算法工具箱函数编写求解实际优化问题的MATLAB程序。第八章和第九章介绍MathWorks公司最新发布的MATLAB遗传算法与直接搜索工具箱及其使用方法。
本书取材新颖,内容丰富,逻辑严谨,语言通俗,理例结合,图文并茂,注重基础,面向应用。书中包含大量的实例,便于自学和应用。