㈠ 如何用MATLAB的神经网络工具箱实现三层BP网络
这是一个来自<神经网络之家>nnetinfo的例子,在matlab2012b运行后的确可以,因为网络知道的文本宽度不够,注释挤到第二行了,有些乱,楼主注意区分哪些是代码哪些是注释,
x1 =
[-3,-2.7,-2.4,-2.1,-1.8,-1.5,-1.2,-0.9,-0.6,-0.3,0,0.3,0.6,0.9,1.2,1.5,1.8]; %x1:x1 = -3:0.3:2;
x2 =
[-2,-1.8,-1.6,-1.4,-1.2,-1,-0.8,-0.6,-0.4,-0.2,-2.2204,0.2,0.4,0.6,0.8,1,1.2];%x2:x2 = -2:0.2:1.2;
y = [0.6589,0.2206,-0.1635,-0.4712,-0.6858,-0.7975,-0.8040,...
-0.7113,-0.5326,-0.2875
,0,0.3035,0.5966,0.8553,1.0600,1.1975,1.2618]; %y:
y = sin(x1)+0.2*x2.*x2;
inputData = [x1;x2]; %将x1,x2作为输入数据
outputData = y; %将y作为输出数据
%使用用输入输出数据(inputData、outputData)建立网络,
%隐节点个数设为3.其中隐层、输出层的传递函数分别为tansig和purelin,使用trainlm方法训练。
net = newff(inputData,outputData,3,{'tansig','purelin'},'trainlm');
%设置一些常用参数
net.trainparam.goal = 0.0001;
%训练目标:均方误差低于0.0001
net.trainparam.show = 400; %每训练400次展示一次结果
net.trainparam.epochs = 15000;
%最大训练次数:15000.
[net,tr] = train(net,inputData,outputData);%调用matlab神经网络工具箱自带的train函数训练网络
simout = sim(net,inputData);
%调用matlab神经网络工具箱自带的sim函数得到网络的预测值
figure; %新建画图窗口窗口
t=1:length(simout);
plot(t,y,t,simout,'r')%画图,对比原来的y和网络预测的y
㈡ bp神经网络matlab工具箱里每次是重新算还是迭代
每次都是重新建立网络,重新设置随机初始权值,重新训练,所以每次的内训练结果都不相同。而且样本容每次代入的顺序可能也是不一样的,所以训练的过程也不同。如果你是做仿真,可以多进行几次,选较好一些的结果。
BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
㈢ matlab工具箱实现BP神经网络,我想在一定样本条件下,一部分样本训练网络,另一部分样本验证网络,求指点
你需要的功能比较简单,可以考虑直接使用MATLAB提供的神经网络图形用户界面(Neural Network Graphic User Interface)的功能。
在Matlab命令窗口敲nntool命令调出来,打开Network/Data管理器窗口,再点击New,按步骤操作即可。在里面可以设置哪些是训练数据样本,哪些是验证网络泛化能力的样本。
㈣ 如何用MATLAB的神经网络工具箱实现三层BP网络
使用神经网络工具箱可以非常简便地实现网络建立和训练,实例代码如下:
%%BP算法
functionOut=bpnet(p,t,p_test)
%p,t为样本需要提前组织好
globalS1
net=newff(minmax(p),[S1,8],{'tansig','purelin'},'trainlm');%trainlm训练函数最有效
%net=newff(P,T,31,{'tansig','purelin'},'trainlm');%新版用法
net.trainParam.epochs=1000;
net.trainParam.goal=0.00001;
net.trainParam.lr=0.01;
net.trainParam.showWindow=false;%阻止训练窗口的弹出
net.trainParam.showCommandLine=false;%阻止训练窗口的弹出
net=train(net,p,t);
Out=sim(net,p_test);
end
上面的代码不完整,完整的带训练样本数据的程序见附件。
㈤ 需要把MATLAB中的BP神经网络工具箱与自己的一个软件项目结合
这个就是C++与matlab混合编程。但是神经网络工具箱比较特别,它反盗用比较严厉。采用回传统的混答编方式,可以调用matlab自己的函数,但无法成功调用神经网络工具箱。这一点在mathwork网站上也做了说明。
以C#为例,一般混编有四种方式:
(1)利用Matlab自身编译器,目的是将m文件转换为c或c++的源代码。
(2)利用COM或.NET组件技术。通过MATLAB中的Deploy tool工具将m文件编译成dll,然后在系统中调用。
(3)利用Mideva平台。没尝试过。
(4)利用MATLAB引擎技术。该方法相当于在.NET中运行MATLAB程序,获取其结果。优点是操作简单,过程简易。缺点是需要安装Matlab软件。
如果要调用神经网络工具箱,只有使用第四种方法,即引擎技术,其他方法都不可行。这种混编方式仅仅传递参数,因此不涉及到神经网络工具箱的代码,也就没有了防盗用限制。
㈥ bp神经网络matlab工具箱建模结果
你用的是matlab的神经网络工具箱吧。那是因为权值和阈值每次都是随机初始化的专,所以结果属就会不一样,
你可以把随机种子固定,即在代码前面加上setdemorandstream(pi); 这样每次训练出来的结果都是一样的了。
看来楼主是刚开始学习神经网络的,推荐一些资料给楼主:
神经网络之家 (专讲神经网络的网站,有视频下载)
matlab中文论坛的神经网络专区
数学中国的神经网络专区
较好的书:
MATLAB神经网络原理与实例精解
㈦ 如何用MATLAB神经网络工具箱创建BP神经网络模型
1. 常用的前馈型BP网络的转移函数有logsig,tansig,有时也会用到线性函数purelin。当网络的最后一层采用曲线函数时,输出被限制在一个很小的范围内,如果采用线性函数则输出可为任意值。以上三个函数是BP网络中最常用到的函数,但是如果需要的话你也可以创建其他可微的转移函数。
2. 在BP网络中,转移函数可求导是非常重要的,tansig、logsig和purelin都有对应的导函数dtansig、dlogsig和dpurelin。为了得到更多转移函数的导函数,可以带字符"deriv"的转移函数:tansig('deriv')
㈧ 神经网络工具箱与编程实现哪个更好
首先说一下神经网络工具箱,在我刚刚接触神经网络的时候,我就利用工具箱去解决问题,这让我从直观上对神经网络有了了解,大概清楚了神经网络的应用范围以及它是如何解决实际问题的。
工具箱的优势在于我们不用了解其内部的具体实现,更关注于模型的建立与问题的分析,也就是说,如果抛开算法的错误,那么用工具箱来解决实际问题会让我们能把更多的精力放在实际问题的模型建立上,而不是繁琐的算法实现以及分析上。
其次谈谈编程实现神经网络,由于个人能力有限,所以只是简单的编程实现过一些基本神经算法,总的体会就是编程的过程让我对算法有了更透彻的理解,可以更深入的分析其内部运行机制,也同样可以实现一下自己的想法,构建自己的神经网络算法。
以上是我对两个方法的简单理解。那究竟哪个方法更好些呢?我个人的看法是要看使用者的目的是怎样的。
如果使用者的目的在于解决实际问题,利用神经网络的函数逼近与拟合功能实现自己对实际问题的分析与模型求解,那我的建议就是利用神经网络工具箱,学过编程语言的人都知道,无论用什么编程语言将一个现有的算法编程实现达到可用的结果这一过程都是及其繁琐与复杂的,就拿简单的经典BP神经网络算法来说,算法本身的实现其实并不难,可根据不同人的能力,编出来的程序的运行效率是大不相同的,而且如果有心人看过matlab的工具箱的源码的话,应该能发现,里面采用的方法并不完全是纯粹的BP经典算法,一个算法从理论到实现还要依赖与其他算法的辅助,计算机在计算的时候难免出现的舍入误差,保证权值的时刻改变,这都是编程人员需要考虑的问题,可能还有很多的问题
这样的话,如果自己单人编程去实现神经网络来解决实际问题的话,整体效率就没有使用工具箱更好。
如果使用者的目的在于分析算法,构造新的网络的话那当然首推自己编程实现。个人的感觉就是,如果真的是自己完全编程实现的话,对算法会有很深入的理解,在编程的调试过程中,也会领悟到很多自己从前从来没有考虑过的问题,像权值的初始的随机选取应该怎么样,将训练样本按什么顺序输入等,这都是编程实现所要考虑的问题,不同的方法得到的结果会有很大的差距。
㈨ matlab神经网络工具箱怎么效果好
导入数据:选择合适的数据,一定要选数值矩阵形式
在这里插入图片描述在这里插入图片描述
进行训练
在这里插入图片描述
接下来就点next,选择输入输出,Sample are是选择以行还是列放置矩阵的,注意调整
在这里插入图片描述
接下来一直next,在这儿点train
在这里插入图片描述
查看结果
在这里插入图片描述
导出代码:再点next,直到这个界面,先勾选下面的,再点Simple Script生成代码
在这里插入图片描述
使用训练好的神经网络进行预测
使用下方命令,z是需要预测的输入变量,net就是训练好的模型
在这里插入图片描述
再将结果输出成excel就行啦
在这里插入图片描述
打开CSDN,阅读体验更佳
使用MATLAB加载训练好的caffe模型进行识别分类_IT远征军的博客-CSDN...
在进行下面的实验前,需要先对数据进行训练得到caffemodel,然后再进行分类识别 c_demo.m function [scores, maxlabel] = c_demo(im, use_gpu) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('/home/...
继续访问
MATLAB调用训练好的KERAS模型_LzQuarter的博客
下载了链接中的“kerasimporter.mlpkginstall”文件后,在matlab内用左侧的文件管理系统打开会进入一个页面,在该页面的右上角有安装的按钮,如果之前安装一直失败,可以通过这个安装按钮的下拉选项选择仅下载 下载还是有可能要用到VPN,但是相比...
继续访问
最新发布 matlab神经网络预测数据,matlab神经网络工具箱
Matlab语言是MathWorks公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空问。它附带有30多个工具箱,神经网络工具箱就是其中之一。谷歌人工智能写作项目:神经网络伪原创。
继续访问
matlab神经网络工具箱系统预测
matlab神经网络工具箱系统预测 有原始数据 根据原始数据预测未来十年内的数据
matlab预测控制工具箱
matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助 matlab预测控制工具箱,在学习预测控制的过程中翻译的matlab自带的示例,希望对大家有所帮助
用matlab做bp神经网络预测,神经网络预测matlab代码
我觉得一个很大的原因是你预测给的输入范围(2014-)超出了训练数据的输入范围(2006-2013),神经网络好像是具有内插值特性,不能超出,你可以把输入变量-时间换成其他的变量,比如经过理论分析得出的某些影响因素,然后训练数据要包括大范围的情况,这样可以保证预测其他年份的运量的时候,输入变量不超出范围,最后预测的时候给出这几个影响因素的值,效果会好一点。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。输出层是个purelin,线性组合后的输出层输出当然也全是几乎相同的了。
继续访问
BP神经网络预测实例(matlab代码,神经网络工具箱)
目录辛烷值的预测matlab代码实现工具箱实现 参考学习b站: 数学建模学习交流 bp神经网络预测matlab代码实现过程 辛烷值的预测 【改编】辛烷值是汽油最重要的品质指标,传统的实验室检测方法存在样品用量大,测试周期长和费用高等问题,不适用于生产控制,特别是在线测试。近年发展起来的近红外光谱分析方法(NIR),作为一种快速分析方法,已广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染,能在线分析,更适合于生产和控制的需要。实验采集得到50组汽油样品(辛烷值已通过其他方法测
继续访问
用matlab做bp神经网络预测,matlab人工神经网络预测
ylabel('函数输出','fontsize',12);%画出预测结果误差图figureplot(error,'-*')title('BP网络预测误差','fontsize',12)ylabel('误差','fontsize',12)xlabel('样本','fontsize',12)。三、训练函数与学习函数的区别函数的输出是权值和阈值的增量,训练函数的输出是训练好的网络和训练记录,在训练过程中训练函数不断调用学习函数修正权值和阈值,通过检测设定的训练步数或性能函数计算出的误差小于设定误差,来结束训练。.
继续访问
matlab训练神经网络模型并导入simulink详细步骤
之前的神经网络相关文章: Matlab-RBF神经网络拟合数据 Matlab RBF神经网络及其实例 4.深度学习(1) --神经网络编程入门 本文介绍一下怎么把训练好的神经网络导入到simulink并使用,假定有两个变量,一个输出变量,随机生成一点数据 x1 = rand(1000,1);x2 = rand(1000,1);x = [x1 x2];y = rand(1000,1); 在App里面找到神经网络工具箱 点击Next 选择对应的数据,注意选择好对应的输入和输出,还
继续访问
用matlab做bp神经网络预测,matlab神经网络怎么预测
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。Network可以看出,你的网络结构是两个隐含层,2-3-1-1结构的网络,算法是traindm,显示出来的误差变化为均方误差值mse。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。如果你所选用的激活函数是线性函数,那么就可以先把输出的表达式写出来,即权向量和输入的矩阵乘积。
继续访问
matlab训练模型、导出模型及VC调用模型过程详解
MATLAB是美国MathWorks公司出品的商业数学软件,为算法开发、数据可视化、数据分析以及数值计算等提供了高级计算语言和交互式环境。随着人工智能的崛起,MATLAB也添加了自己的机器学习工具包,只需要很少的代码或命令就能完成模型训练和测试的过程,训练好的模型也能方便的导出,供VC等调用。本文主要介绍模型训练、导出和调用的整个过程。 软件版本: VC2015,matlab2018a ...
继续访问
matlab神经网络预测模型,matlab人工神经网络预测
谷歌人工智能写作项目:小发猫matlab带有神经网络工具箱,可直接调用,建议找本书看看,或者MATLAB论坛找例子常见的神经网络结构。核心调用语句如下:%数据输入%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%%BP网络训练%%初始化网络结构net=newff(inputn,outputn,[88]);net.trainParam.epochs=100;=0.0
继续访问
在Matlab中调用pytorch上训练好的网络模型
在Matlab中调用pytorch上训练好的网络模型
继续访问
MATLAB_第二篇神经网络学习_BP神经网络
BP神经网络代码实现1. BP神经网络的简介和结构参数1.1 BP神经网络的结构组成1.2 BP神经网络训练界面的参数解读 非常感谢博主wishes61的分享. 1. BP神经网络的简介和结构参数 一种按照误差逆向传播算法训练的多层前馈神经网络用于预测BP神经网络的计算过程:由正向计算过程和反向计算过程组成。 正向传播过程,输入模式从输入层经隐单元层逐层处理,并转向输出层,每一层神经元的状态只影响下一层神经元的状态。 如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各
继续访问
MATLAB神经网络拟合回归工具箱Neural Net Fitting的使用方法
本文介绍MATLAB软件中神经网络拟合(Neural Net Fitting)工具箱的具体使用方法~
继续访问
灰色预测工具箱matlab,Matlab灰色预测工具箱——走过数模
2009-07-02 23:05灰色预测几乎是每年数模培训必不可少的内容,相对来说也是比较简单,这里写了四个函数,方便在Matlab里面调用,分别是GM(1,1),残差GM(1,1),新陈代谢GM(1,1),Verhust自己写得难免有所疏忽,需要的朋友自己找本书本来试验一下。。Gm(1,1)function [px0,ab,rel]=gm11(x0,number)%[px0,ab,rel]=gm...
继续访问
matlab利用训练好的BP神经网络来预测新数据(先保存网络,再使用网络)
1,保存网络。save ('net') % net为已训练好的网络,这里把他从workspace保存到工作目录,显示为net.mat文档。 2,使用网络。load ('net') % net为上面保存的网络,这里把他下载到workspace。y_predict = sim(...
继续访问
数学建模学习(79):Matlab神经网络工具箱使用,实现多输入多输出预测
Matlab神经网络工具箱实现,实现多输入多输出预测
继续访问
热门推荐 如何利用matlab做BP神经网络分析(包括利用matlab神经网络工具箱)
利用MATLAB 进行BP神经网络的预测(含有神经网络工具箱) 最近一段时间在研究如何利用预测其销量个数,在网上搜索了一下,发现了很多模型来预测,比如利用回归模型、时间序列模型,GM(1,1)模型,可是自己在结合实际的工作内容,发现这几种模型预测的精度不是很高,于是再在网上进行搜索,发现神经网络模型可以来预测,并且有很多是结合时间序列或者SVM(支持向量机)等组合模型来进...
继续访问
bp神经网络预测案例python_详细BP神经网络预测算法及实现过程实例
1.具体应用实例。根据表2,预测序号15的跳高成绩。表2国内男子跳高运动员各项素质指标序号跳高成绩()30行进跑(s)立定三级跳远()助跑摸高()助跑4—6步跳高()负重深蹲杠铃()杠铃半蹲系数100(s)抓举()12.243.29.63.452.151402.811.05022.333.210.33.752.21203.410.97032.243.09.03.52.21403.511.4504...
继续访问
如何调用MATLAB训练神经网络生成的网络进行预测
如何调用MATLAB训练神经网络生成的网络问题引出知识准备代码注解 问题引出 如何存储和调用已经训练好的神经网络。 本人前几天在智能控制学习的过程中也遇到了这样的问题,在论坛中看了大家的回复,虽然都提到了关键的两个函数“save”和“load”,但或多或少都简洁了些,让人摸不着头脑(呵呵,当然也可能是本人太菜)。通过不断调试,大致弄明白这两个函数对神经网络的存储。下面附上实例给大家做个说明,希望对跟我有一样问题的朋友有所帮助。 知识准备 如果只是需要在工作目录下保到当前训练好的网络,可以在命令窗口 输入:s
继续访问
matlab训练好的模型怎么用
神经网络