1. matlab中的降维函数是什么
drttoolbox : Matlab Toolbox for Dimensionality Rection是Laurens van der Maaten数据降维的工具箱。
里面囊括了几乎所有的数据降维算法:
- Principal Component Analysis ('PCA')
- Linear Discriminant Analysis ('LDA')
- Independent Component Analysis ('ICA')
- Multidimensional scaling ('MDS')
- Isomap ('Isomap')
- Landmark Isomap ('LandmarkIsomap')
- Locally Linear Embedding ('LLE')
- Locally Linear Coordination ('LLC')
- Laplacian Eigenmaps ('Laplacian')
- Hessian LLE ('HessianLLE')
- Local Tangent Space Alignment ('LTSA')
- Diffusion maps ('DiffusionMaps')
- Kernel PCA ('KernelPCA')
- Generalized Discriminant Analysis ('KernelLDA')
- Stochastic Neighbor Embedding ('SNE')
- Neighborhood Preserving Embedding ('NPE')
- Linearity Preserving Projection ('LPP')
- Stochastic Proximity Embedding ('SPE')
- Linear Local Tangent Space Alignment ('LLTSA')
- Simple PCA ('SPCA')
2. python数据挖掘工具包有什么优缺点
【导读】python数据挖掘工具包就是scikit-learn,scikit-learn是一个基于NumPy, SciPy,
Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM,
逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项目中都有应用。
优点:
1、文档齐全:官方文档齐全,更新及时。
2、接口易用:针对所有算法提供了一致的接口调用规则,不管是KNN、K-Means还是PCA.
3、算法全面:涵盖主流机器学习任务的算法,包括回归算法、分类算法、聚类分析、数据降维处理等。
缺点:
缺点是scikit-learn不支持分布式计算,不适合用来处理超大型数据。
Pandas是一个强大的时间序列数据处理工具包,Pandas是基于Numpy构建的,比Numpy的使用更简单。最初开发的目的是为了分析财经数据,现在已经广泛应用在Python数据分析领域中。Pandas,最基础的数据结构是Series,用它来表达一行数据,可以理解为一维的数组。另一个关键的数据结构为DataFrame,它表示的是二维数组
Pandas是基于NumPy和Matplotlib开发的,主要用于数据分析和数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制。有一本书《Python
for Data Analysis》,作者是Pandas的主力开发,依次介绍了iPython, NumPy,
Pandas里的相关功能,数据可视化,数据清洗和加工,时间数据处理等,案例包括金融股票数据挖掘等,相当不错。
Mlpy是基于NumPy/SciPy的Python机器学习模块,它是Cython的扩展应用。
关于python数据挖掘工具包的优缺点,就给大家介绍到这里了,scikit-learn提供了一致的调用接口。它基于Numpy和scipy等Python数值计算库,提供了高效的算法实现,所以想要学习python,以上的内容得学会。