A. 关于传递函数参数在线辨识的几个问题
可以啊,MATLAB里面的ident工具箱就是专门用来做辨识的,你只需要把输入输出的数据给它,然后设置好参数(采样时间,传递函数阶数,有无零点,有无延迟,极点类型等),然后就会计算出传递函数的参数,不需要编程,我记得这个工具箱本身用的就是最小二乘的算法。当然,MATLAB本身是以矩阵为基础的,所以你需要有一个数据采集器采集数据,然后存到一个数组里,然后转化成向量的形式,让MATLAB来读取数据。这个工具箱能够接受各种各样的数据,可以是时域的,也可以是频域的,比如阶跃信号就很明显是时域的分析,如果测试的时候用的是不同频率的正弦波,那就是扫频法,属于频域数据。能够辨识的数学模型可以使传递函数,也可以是状态空间方程等等。
至于精度的问题,和采样时间一定是有关的,但是也没必要让采样时间间隔很小,适当就可以了,一般的数据采集器都可以满足要求。还有就是辨识算法的正确性与合理性很重要,可以说是起到关键作用的。而且不同类型的算法适应不同的系统,很难单纯地用精度来说。反正以实际结果为准,吻合度高的就是好的。
B. 急求!怎样用MATLAB输入一个传递函数
1、将输入输出数据保存存到MATLAB的工作空间中;
C. 从matlab系统辨识工具箱导出传递函数模型
谢邀。
如果想通过程序代码实现传递函数的功能,需要将辨识得到内的传递函数离散化并转化成容差分方程,然后通过当前时刻和前几个时刻的数据即可计算得到当前时刻输出。k-1时刻的
举一个简单的例子说吧
假设单输入单输出传递函数是G=1/(s+1)
按采样周期Ts=0.01s离散得到离散传递函数G'=Y/U=0.00995z^-1/(1-0.99z^-1)
转化为差分方程为y(k)=0.99*y(k-1)+0.00995*u(k-1)
也就是说想要得到k时刻的输出y,需要通过k-1时刻的输出y与k-1时刻的输入u,编写程序时对之前时刻的数据加以记录即可
辨识工具箱我这边只是浅尝辄止,项目最后使用了神经网络辨识的方式,而且负责这块的人也并不是我。只是按照我自己仅有的理解加以解答,不知道是否对您有所帮助。能力所限,如果没有帮助还请见谅。
D. MATLAB系统辨识工具箱(ARMAX模型)
系统辨识是研究系统输入输出数据,以建立描述系统行为的数学模型的现代控制理论分支。MATLAB系统辨识工具箱提供直观且简便的流程进行模型拟合,本文将简要介绍其使用方法。
使用MATLAB系统辨识工具箱进行模型辨识的第一步是打开工具箱,通过命令窗口输入“ident”即可实现。
导入数据时,数据分为输入与输出两部分,这里以功率输出为例,使用MATLAB自带数据为例。步骤包括数据导入、选择数据范围、预处理数据等。具体步骤包括:时间域数据导入、填写数据、数据范围选择、趋势项去除等操作。数据预处理后,系统界面将显示预处理后的数据。
进行模型辨识时,以多项式ARMAX模型为例,选择Estimate→Polynomial Models。数据将自动展示在右侧,双击模型可以查看参数。模型输出界面展示了模型的拟合程度,如ARMAX2221模型的拟合度为76.72%。
对于ARX模型的辨识,选择Estimate→Polynomial Models,选择ARX模型进行辨识,设置阶数范围为1-10,并观察不同算法下的最优拟合情况。结果显示,最小二乘法的拟合度最高。
系统辨识工具箱在数据处理过程中提供了便利的工具,通过直观的界面和简单的操作步骤,实现数据模型的快速拟合。其数据精度基本符合要求,在现代控制系统设计中发挥重要作用。
E. 如何使用matlab中的工具箱
使用matlab中的工具箱方法:
MATLAB自带工具箱
查看方式:
我们首先详细介绍一下MATLAB自带工具箱的使用。
在我们不熟悉一些调用工具箱的命令的时候,我们可以按照如下图所示:
在MATLAB主窗口中,点击左下角start--toolboxes,就会罗列出你的MATLAB已经安装的所有工具箱,可以根据你的需要选择你将要使用的工具箱。我们可以看到有拟合工具箱、金融工具箱、最优化工具箱等等。
调用(打开)方式:
下面我们介绍一下如何打开一个工具箱。
我们以调用拟合工具箱为例,进行详细的示例。
调用方式一:
按照如下图所示的步骤:
点击主窗口左下角start--toolboxes--curve fitting--curve fitting tool 单击,就可以打开拟合工具箱.
调用方式二:
在上一步中,我们在start--toolboxes--curve fitting--curve fitting tool ,到这里的时候,会看到在其后面有一个简写 cftool 如下图,这就是我们的拟合工具箱调用命令函数。在MATLAB主窗口中输入cftool ,回车,同样可以打开拟合工具箱。
工具箱的使用:
拟合工具箱打开之后,如下,我们就可以进行多种曲线拟合了。
关于MATLAB拟合工具箱等,一些工具箱的详细用法,由于篇幅的有限,在我的其他经验中都会陆续给出,有兴趣的可以查看。
非自带工具箱
非自带工具箱,需另外下载,然后按照一定的步骤导入,导入后一般不能像上面工具箱一样,通过界面操作,一般都通过函数使用。由于工具箱的导入有几个小的细节需要注意,所以在我的其他经验中,关于如何导入工具箱,我也进行了详细的介绍。
F. MATLAB里的Toolboxes怎么使用急求高手指点!!!
MATLAB工具箱介绍
有三十多个工具箱大致可分为两类:功能型工具箱和领域型工具箱。
功能型工具箱主要用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能用于多种学科。
领域型工具箱是专业性很强的。如图像处理工具箱(Image Processing Toolbox)、控制工具箱(Control Toolbox)、信号处理工具箱(Signal Processing Toolbox)等。下面,将MATLAB工具箱内所包含的主要内容做简要介绍:
1) 图像处理工具箱(Image Processing Toolbox)。
* 二维滤波器设计和滤波
* 图像恢复增强
* 色彩、集合及形态操作
* 二维变换
* 图像分析和统计
可由结构图直接生成可应用的C语言源代码。
2)控制系统工具箱(Control System Toolbox)。
鲁连续系统设计和离散系统设计
* 状态空间和传递函数
* 模型转换
* 频域响应:Bode图、Nyquist图、Nichols图
* 时域响应:冲击响应、阶跃响应、斜波响应等
* 根轨迹、极点配置、LQG
3)财政金融工具箱(FinancialTooLbox)。
* 成本、利润分析,市场灵敏度分析
* 业务量分析及优化
* 偏差分析
* 资金流量估算
* 财务报表
4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox
* 辨识具有未知延迟的连续和离散系统
* 计算幅值/相位、零点/极点的置信区间
* 设计周期激励信号、最小峰值、最优能量诺等
5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。
* 友好的交互设计界面
* 自适应神经—模糊学习、聚类以及Sugeno推理
* 支持SIMULINK动态仿真
* 可生成C语言源代码用于实时应用
(6)高阶谱分析工具箱(Higher—Order SpectralAnalysis Toolbox
* 高阶谱估计
* 信号中非线性特征的检测和刻画
* 延时估计
* 幅值和相位重构
* 阵列信号处理
* 谐波重构
(7) 通讯工具箱(Communication Toolbox)。
令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析
——信号编码
——调制解调
——滤波器和均衡器设计
——通道模型
——同步
(8)线性矩阵不等式控制工具箱(LMI Control Toolbox)。
* LMI的基本用途
* 基于GUI的LMI编辑器
* LMI问题的有效解法
* LMI问题解决方案
(9)模型预测控制工具箱(ModelPredictive Control Toolbox
* 建模、辨识及验证
* 支持MISO模型和MIMO模型
* 阶跃响应和状态空间模型
(10)u分析与综合工具箱(u-Analysis and Synthesis Toolbox)
* u分析与综合
* H2和H无穷大最优综合
* 模型降阶
* 连续和离散系统
* u分析与综合理论
(11)神经网络工具箱(Neursl Network Toolbox)。
* BP,Hopfield,Kohonen、自组织、径向基函数等网络
* 竞争、线性、Sigmoidal等传递函数
* 前馈、递归等网络结构
* 性能分析及应用
(12)优化工具箱(Optimization Toolbox)。
* 线性规划和二次规划
* 求函数的最大值和最小位
* 多目标优化
* 约束条件下的优化
* 非线性方程求解
(13)偏微分方程工具箱(Partial DifferentialEquation Toolbox)。
* 二维偏微分方程的图形处理
* 几何表示
* 自适应曲面绘制,
* 有限元方法
(14)鲁棒控制工具箱(Robust Control Toolbox)。
* LQG/LTR最优综合
* H2和H无穷大最优综合
* 奇异值模型降阶
* 谱分解和建模
(15)信号处理工具箱(signal Processing Toolbox)
* 数字和模拟滤波器设计、应用及仿真
* 谱分析和估计
* FFT,DCT等变换
* 参数化模型
(16)样条工具箱(SPline Toolbox)。
* 分段多项式和B样条
* 样条的构造
* 曲线拟合及平滑
* 函数微分、积分
(17)统计工具箱(Statistics Toolbox)。
* 概率分布和随机数生成
* 多变量分析
* 回归分析
* 主元分析
* 假设检验
(18)符号数学工具箱(Symbolic Math Toolbox)。
* 符号表达式和符号矩阵的创建
* 符号微积分、线性代数、方程求解
* 因式分解、展开和简化
* 符号函数的二维图形
* 图形化函数计算器
(19)系统辨识工具箱(SystEm Identification Toolbox)
* 状态空间和传递函数模型
* 模型验证
* MA,AR,ARMA等
* 基于模型的信号处理
* 谱分析
(20)小波工具箱(Wavelet Toolbox)。
* 基于小波的分析和综合
* 图形界面和命令行接口
* 连续和离散小波变换及小波包
* 一维、二维小波
* 自适应去噪和压缩