『壹』 为什么Matlab神经网络里面会有聚类分析,模式识别,还有fitting tools,神经网络和聚类、模式有区别吗
我的理解是 神经网络可以 用于预测,模式识别,聚类,fitting tools是MATLAB自带工具箱
模式识别与分类 都是基于原始数据通过学习训练网络 来预测新的数据源,通过预测结果来确定属于哪一类。
真正的聚类分析是给定初始点迭代通过计算类间距离确定属于哪一类,谱系聚类和kmeans聚类。
而神经网络倾向于 有监督学习,已经给定样本数据及所属类别输出为(0,1),(1,0),根据样本数据进行训练学习,再对新的数据进行计算输出,通过输出判断类别。
『贰』 MATLAB神经网络拟合工具箱Neural Net Fitting实现回归预测
本文讲解在MATLAB软件中利用神经网络拟合(Neural Net Fitting)工具箱实现回归预测的具体方法。首先,导入数据时通过readtable()函数从Excel读取数据,随后将因变量Y与自变量X准备就绪。对于多个自变量,需合并放置于单一变量X中。
接着,运行MATLAB软件并选择“APP”→“Neural Net Fitting”打开工具箱。在“Neural Network Start”界面,选择输入与输出数据。通过鼠标在MATLAB工作区找到对应变量,确保数据维度正确设置。
继续点击“Next”,进入数据集划分界面。在此选择验证集与测试集比例,一般数据量少时采用6:2:2比例,数据量大时则为98:1:1,依据实际情况调整。
接着,点击“Next”进入神经网络结构配置界面。仅能配置隐藏层神经元数量,默认为1层,不能修改。对于隐藏层数量,建议先填写默认值10,根据模型精度与运行时间进行二次调整。
点击“Next”后,进入神经网络模型训练界面。选择训练算法,提供三种选项:Levenberg-Marquardt算法、Bayesian regularization算法、Scaled conjugate gradient backpropagation算法。结合数据特性,一般优先选择Levenberg-Marquardt算法。
训练模型后,界面显示训练结果窗口与精度评定指标数值。如对模型不满意,可多次重复训练并调整参数重新构建模型。若模型基本满意,点击“Next”进入模型调整界面,可进一步优化模型。
继续点击“Next”,进入解决方案部署界面。此界面提供代码生成、关键参数保存等功能。选择“Generate Scripts”自动生成MATLAB代码,简化后续模型训练。在“Save Data to Workspace”中保存模型参数,以便未来直接调用模型。
保存完毕后,点击“Finish”退出神经网络拟合工具箱。系统若未保存任何代码或参数,会弹出提示确认退出。
『叁』 Matlab神经网络与应用的介绍
Matlab语言是MathWorks公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空问。它附带有30多个工具箱,神经网络工具箱就是其中之一。 本书是在Matlab 7.2的神经网络工具箱v5.2基础上编写的,在M-book数据图形文字环境下以图文并茂的形式循序渐进地介绍了Matlab神经网络工具箱的原理和应用。全书共11章,首先就各类型神经网络的结构模型、设计、训练等加以描述,并辅以大量的应用实例演示,然后介绍了神经网络图形用户界面,以及如何在Simulink环境下进行网络设计,最后提供了自定义神经网络的方法。