㈠ MATLAB系统辨识工具箱(ARMAX模型)
系统辨识是研究系统输入输出数据,以建立描述系统行为的数学模型的现代控制理论分支。MATLAB系统辨识工具箱提供直观且简便的流程进行模型拟合,本文将简要介绍其使用方法。
使用MATLAB系统辨识工具箱进行模型辨识的第一步是打开工具箱,通过命令窗口输入“ident”即可实现。
导入数据时,数据分为输入与输出两部分,这里以功率输出为例,使用MATLAB自带数据为例。步骤包括数据导入、选择数据范围、预处理数据等。具体步骤包括:时间域数据导入、填写数据、数据范围选择、趋势项去除等操作。数据预处理后,系统界面将显示预处理后的数据。
进行模型辨识时,以多项式ARMAX模型为例,选择Estimate→Polynomial Models。数据将自动展示在右侧,双击模型可以查看参数。模型输出界面展示了模型的拟合程度,如ARMAX2221模型的拟合度为76.72%。
对于ARX模型的辨识,选择Estimate→Polynomial Models,选择ARX模型进行辨识,设置阶数范围为1-10,并观察不同算法下的最优拟合情况。结果显示,最小二乘法的拟合度最高。
系统辨识工具箱在数据处理过程中提供了便利的工具,通过直观的界面和简单的操作步骤,实现数据模型的快速拟合。其数据精度基本符合要求,在现代控制系统设计中发挥重要作用。
㈡ 如何使用matlab中的ident工具箱进行系统辨识数学模型
使用matlab工具箱更为方便和直观: 1. 把u,y信号导入到工作空间里。 2. 用版ident命令打开matlab系统辨识权工具箱,然后点击import data,从新打开界面里导入工作空间的数据。然后可以通过图形查看该输入输出信号,或者在proprocess进行信号预处理。 3. 根据你的模型在estimate里选择linear parameter models,个人觉得你应该选择ARX结构,确定阶数,然后进行估计。 4. 在主界面里查看估计模型,并且可以和实际输出比较,看看拟合度。 详细使用方面参考 帮助文档 System Identification Toolbox User's Guide
㈢ 用matlab工具箱怎么对garch模型做预测
对garch模型做预测可以用matlab自带的garchfit()函数,该函数主要用于估计ARMAX / GARCH模型参数。garchfit()函数使用格式:
[Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(Spec,Series,X)
Coeff——输入参数。接受由garchset,garchget,garchsim,garchinfer,和garchpred结构产生的参数。
Errors——系数的估计误差(即标准误差)的结构。
LLF——对于优化目标函数值与参数相关的估计发现Coeff。garchfit执行优化使用优化工具箱fmincon函数。
Innovations——创建(即残差)序列推导的时间序列列向量。
Sigmas——与创建相对应的条件标准偏差向量。
Summary——显示优化过程的摘要信息结构。
Spec——包含条件均值和方差规范的GARCH规范结构。它还包含估计所需的优化参数。通过调用garchset创建这个结构。
Series——观测的时间序列列向量。
X——观测数据的时间序列回归矩阵。
例如:
clc
spec = garchset('C',0,'K',0.0001,'GARCH',0.9,'ARCH',0.05);%指定模型的结构
[e,s,y]= garchsim(spec,1000);
[Coeff,Errors,LLF,Innovations,Sigmas,Summary] = garchfit(spec,y) %拟合参数
运行后得到的部分结果
㈣ 请问如何将matlab系统辨识工具箱的模拟数据导出
只要有数据,就可以用matlab系统识别工具箱的函数进行建模、估计、计算、预测,请把数据和要求说下。